Biotechnology Bulletin ›› 2025, Vol. 41 ›› Issue (7): 281-291.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1245
Previous Articles Next Articles
ZHANG Jin-hao1,2(
), DENG Hui1,2,3, ZHANG Qing-zhuang1,2, TAO Yu1,2, ZHOU Chi1,2(
), LI Xin1,2(
)
Received:2024-12-24
Online:2025-07-26
Published:2025-07-22
Contact:
ZHOU Chi, LI Xin
E-mail:2827781912@qq.com;492946136@qq.com;s2007203272@yeah.net
ZHANG Jin-hao, DENG Hui, ZHANG Qing-zhuang, TAO Yu, ZHOU Chi, LI Xin. Modulation of the Growth, Quality, and Cadmium Content of Lily Bulbs by Bacillus velezensis XY40-1[J]. Biotechnology Bulletin, 2025, 41(7): 281-291.
处理 Treatment | 总氮 Total nitrogen (g/kg) | 总磷 Total phosphorus (g/kg) | 总钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 水解氮 Hydrolyzable nitrogen (mg/kg) | 有效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) | pH |
|---|---|---|---|---|---|---|---|---|
| CK | 1.64±0.04 | 0.962±0.034 | 23.181±0.009 | 27.35±0.75 | 163.92±3.85 | 236.81±1.26 | 143.56±1.03 | 5.12±0.01 |
| T | 1.59±0.023 | 1.039±0.037 | 22.89±0.10 * | 24.88±0.37 ** | 159.02±3.33 | 230.29±5.24 | 188.28±1.46 *** | 5.41±0.01 *** |
Table 1 Soil physical and chemical properties
处理 Treatment | 总氮 Total nitrogen (g/kg) | 总磷 Total phosphorus (g/kg) | 总钾 Total potassium (g/kg) | 有机质 Organic matter (g/kg) | 水解氮 Hydrolyzable nitrogen (mg/kg) | 有效磷 Available phosphorus (mg/kg) | 速效钾 Available potassium (mg/kg) | pH |
|---|---|---|---|---|---|---|---|---|
| CK | 1.64±0.04 | 0.962±0.034 | 23.181±0.009 | 27.35±0.75 | 163.92±3.85 | 236.81±1.26 | 143.56±1.03 | 5.12±0.01 |
| T | 1.59±0.023 | 1.039±0.037 | 22.89±0.10 * | 24.88±0.37 ** | 159.02±3.33 | 230.29±5.24 | 188.28±1.46 *** | 5.41±0.01 *** |
微生物类型 Type of microorganism | 处理 Treatment | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index | 覆盖率 Coverage (%) |
|---|---|---|---|---|---|---|
| 真菌 Fungi | CK | 5.946±0.07a | 0.91±0.004a | 1 361.69±12.11a | 1 358.058±11.523a | 99.99 |
| T | 5.791±0.04b | 0.91±0.005a | 1 322.22±6.266a | 1 305.827±4.777a | 99.99 | |
| 细菌 Bacteria | CK | 8.39±0.02a | 0.98±0.000 3a | 1 257.31±2.87a | 1 254.28±2.837a | 99.99 |
| T | 8.55±0.04b | 0.99±0.000 7b | 868.12±3.56.33b | 865.722±4.61b | 99.99 |
Table 2 α diversity index of microorganisms
微生物类型 Type of microorganism | 处理 Treatment | Shannon指数 Shannon index | Simpson指数 Simpson index | ACE指数 ACE index | Chao 1指数 Chao 1 index | 覆盖率 Coverage (%) |
|---|---|---|---|---|---|---|
| 真菌 Fungi | CK | 5.946±0.07a | 0.91±0.004a | 1 361.69±12.11a | 1 358.058±11.523a | 99.99 |
| T | 5.791±0.04b | 0.91±0.005a | 1 322.22±6.266a | 1 305.827±4.777a | 99.99 | |
| 细菌 Bacteria | CK | 8.39±0.02a | 0.98±0.000 3a | 1 257.31±2.87a | 1 254.28±2.837a | 99.99 |
| T | 8.55±0.04b | 0.99±0.000 7b | 868.12±3.56.33b | 865.722±4.61b | 99.99 |
Fig. 2 Relative abundances at bacterial phylum and genus levelA: Taxonomic composition of bacterial communities under different treatments at the phylum level; B: taxonomic composition of bacterial communities under different treatments at the genus level; C: principal component analysis (PCA) of bacterial communities
Fig. 4 Changes in soil microbial abundances around lily rhizosphereA: Taxonomic composition of bacterial communities in soils at the phylum level; B: taxonomic composition of bacterial communities in soils at the genus level
Fig. 5 Changes in soil microbial abundance and gene function around lily rhizosphereA: Nitrogen metabolism pathways. B: Heatmap of expressions of nitrogen metabolism-related genes in soil bacteria under different treatments. C: Heatmap of expressions of cadmium-related genes in soil bacteria under different treatments
Fig. 6 Redundancy analysis at the phylum levelA, C: Redundancy analysis (RDA) of bacterial (A) and fungal (C) communities based on relative abundances at phylum level and soil properties in individual samples. B, D: Heatmap of the Spearman correlation coefficient between Cd fractions and abundant bacterial (B) and fungal (D) phyla. Ex-Cd: Exchangeable cadmium. The same below
Fig. 7 Redundancy analysis at the phylum levelA: Redundancy analysis based on the relative abundances of microbial communities at the phylum level and soil cadmium fractions in individual samples. B: Heatmap of the Spearman correlation coefficient between cadmium fractions and microbial phyla
| [40] | 侯进慧, 樊继强, 王富威, 等. 牛蒡根际可培养细菌多样性和镉耐性初步分析 [J]. 生物技术通报, 2012, 28(8): 158-162. |
| Hou JH, Fan JQ, Wang FW, et al. Priliminary analysis of cultivable bacteria diversity and Cd2+ resistance in burdock rhizosphere [J]. Biotechnol Bull, 2012, 28(8): 158-162. | |
| [41] | Sun H, Shao C, Jin Q, et al. Effects of cadmium contamination on bacterial and fungal communities in Panax ginseng-growing soil [J]. BMC Microbiol, 2022, 22(1): 77. |
| [1] | Biswas MK, Nath UK, Howlader J, et al. Exploration and exploitation of novel SSR markers for candidate transcription factor genes in Lilium species [J]. Genes, 2018, 9(2): 97. |
| [2] | 许青阳, 戴亮亮, 肖凯琦, 等. 基于镉污染风险的湖南省龙山县百合种植区安全区划 [J]. 地质论评, 2023, 69(5): 1869-1878. |
| Xu QY, Dai LL, Xiao KQ, et al. Safety zoning of lily planting regions based on cadmium pollution risk in Longshan County, Hunan Province [J]. Geol Rev, 2023, 69(5): 1869-1878. | |
| [3] | 张敏, 马淼. 甘草根际土壤微生物群落对长期连作的响应 [J]. 生态学报, 2022, 42(22): 9017-9025. |
| Zhang M, Ma M. Response of rhizosphere soil microbial community to long-term continuous cropping of Glycyrrhiza glabra L [J]. Acta Ecol Sin, 2022, 42(22): 9017-9025. | |
| [4] | 刘星, 张文明, 张春红, 等. 土壤灭菌-生物有机肥联用对连作马铃薯及土壤真菌群落结构的影响 [J]. 生态学报, 2016, 36(20): 6365-6378. |
| Liu X, Zhang WM, Zhang CH, et al. Combination of the application of soil disinfection and bio-organic fertilizer amendment and its effects on yield and quality of tubers, physiological characteristics of plants, and the soil fungal community in a potato monoculture system [J]. Acta Ecol Sin, 2016, 36(20): 6365-6378. | |
| [5] | 陈林. 根际促生菌(PGPR)与有机肥配施缓解作物连作障碍初探及其在有机种植中的应用 [D]. 南京: 南京农业大学, 2022. |
| Chen L. Preliminary study on the application of rhizosphere growth-promoting bacteria (PGPR) combined with organic fertilizer to alleviate the obstacle of continuous cropping and its application in organic planting [D]. Nanjing: Nanjing Agricultural University, 2022. | |
| [6] | Chauhan A, Saini R, Sharma JC. Plant growth promoting rhizobacteria and their biological properties for soil enrichment and growth promotion [J]. J Plant Nutr, 2022, 45(2): 273-299. |
| [7] | Tribedi P, Sil AK. Bioaugmentation of polyethylene succinate-contaminated soil with Pseudomonas sp. AKS2 results in increased microbial activity and better polymer degradation [J]. Environ Sci Pollut Res Int, 2013, 20(3): 1318-1326. |
| [8] | Shi HM, Lu LX, Ye JR, et al. Effects of two Bacillus velezensis microbial inoculants on the growth and rhizosphere soil environment of Prunus davidiana [J]. Int J Mol Sci, 2022, 23(21): 13639. |
| [9] | Du NS, Guo H, Fu RK, et al. Comparative transcriptome analysis and genetic methods revealed the biocontrol mechanism of Paenibacilluspolymyxa NSY50 against tomato Fusarium wilt [J]. Int J Mol Sci, 2022, 23(18): 10907. |
| [10] | Lv Y, Wang XF, Xue WF, et al. Addition of microbes shifts the ability of soil carbon sequestration in the process of soil Cd remediation [J]. J Soils Sediments, 2024, 24(7): 2669-2683. |
| [11] | 周池, 周诗晶, 陶禹, 等. 贝莱斯芽孢杆菌XY40-1: 全基因组特征分析及对辣椒疫病的生物防治效果评价 [J]. 微生物学报, 2024, 64(12): 4882-4901. |
| Zhou C, Zhou SJ, Tao Y, et al. Bacillus velezensis XY40-1: analysis of whole genome characteristics and evaluation of biological control effect on pepper blight [J]. China Ind Econ, 2024, 64(12): 4882-4901. | |
| [12] | Wang G, Ren Y, Bai XJ, et al. Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants [J]. Plants, 2022, 11(23): 3200. |
| [13] | Kumar V, Koul B, Taak P, et al. Journey of Trichoderma from pilot scale to mass production: a review [J]. Agriculture, 2023, 13(10): 2022. |
| [14] | 罗耀华. 热激介导角质层代谢调控鲜切百合鳞茎品质特性的研究 [D]. 长沙: 湖南大学, 2022. |
| Luo YH. Study on the quality characteristics of fresh-cut lily bulbs regulated by heat shock mediated cuticle metabolism [D]. Changsha: Hunan University, 2022. | |
| [15] | Peng SL, Chen AQ, Fang HD, et al. Effects of vegetation restoration types on soil quality in Yuanmou dry-hot valley, China [J]. Soil Sci Plant Nutr, 2013, 59(3): 347-360. |
| [16] | Wang JJ, Zhao SQ, Xu S, et al. Co-inoculation of antagonistic Bacillus velezensis FH-1 and Brevundimonas diminuta NYM3 promotes rice growth by regulating the structure and nitrification function of rhizosphere microbiome [J]. Front Microbiol, 2023, 14: 1101773. |
| [17] | Yang HY, Hui L, Sun HQ, et al. Soil intrinsic properties changes and yield loss of Lanzhou lily (Lilium davidii var. unicolor) under continuous cropping in the arid area of western China [J]. Pak J Bot, 2023, 55(6): 2091-2099. |
| [18] | Wang JZ, Qu F, Liang JY, et al. Bacillus velezensis SX13 promoted cucumber growth and production by accelerating the absorption of nutrients and increasing plant photosynthetic metabolism [J]. Sci Hortic, 2022, 301: 111151. |
| [19] | Afzal A, Bahader S, Ul Hassan T, et al. Rock phosphate solubilization by plant growth-promoting Bacillus velezensis and its impact on wheat growth and yield [J]. Geomicrobiol J, 2023, 40(2): 131-142. |
| [20] | Sun XL, Xu ZH, Xie JY, et al. Bacillus velezensis stimulates resident rhizosphere Pseudomonas stutzeri for plant health through metabolic interactions [J]. ISME J, 2022, 16(3): 774-787. |
| [21] | 孔德婷, 齐笑含, 刘兴蕾, 等. 不同多年生稻品种内生细菌群落多样性比较分析 [J]. 生物技术通报, 2024, 40(5): 225-236. |
| Kong DT, Qi XH, Liu XL, et al. Comparison and analysis of endophytic bacterial communities in different perennial rice varieties [J]. Biotechnol Bull, 2024, 40(5): 225-236. | |
| [22] | Chen H, Ren HY, Liu JJ, et al. Soil acidification induced decline disease of Myrica rubra: aluminum toxicity and bacterial community response analyses [J]. Environ Sci Pollut Res Int, 2022, 29(30): 45435-45448. |
| [23] | Li M, Chen CJ, Zhang HY, et al. Effects of biochar amendment and organic fertilizer on microbial communities in the rhizosphere soil of wheat in Yellow River Delta saline-alkaline soil [J]. Front Microbiol, 2023, 14: 1250453. |
| [24] | Ye LJ, Wang XH, Wei SB, et al. Dynamic analysis of the microbial communities and metabolome of healthy banana rhizosphere soil during one growth cycle [J]. PeerJ, 2022, 10: e14404. |
| [25] | 李昱达, 王国华, 赵丽娜, 等. 荒漠绿洲边缘不同种植年限人工梭梭林土壤和根系微生物群落特征 [J]. 应用生态学报, 2025, 36(1): 39-49. |
| Li YD, Wang GH, Zhao LN, et al. Characteristics of soil and root microbial communities of Haloxylon ammodendron plantation of different ages in the margin of a desert oasis [J]. Chin J Appl Ecol, 2025, 36(1): 39-49. | |
| [26] | Tripathi BM, Kim M, Kim Y, et al. Variations in bacterial and archaeal communities along depth profiles of Alaskan soil cores [J]. Sci Rep, 2018, 8(1): 504. |
| [27] | 胡应平, 林冬梅, 胡弘正, 等. 旱稻联合固氮菌的分离、鉴定及功能特性 [J]. 福建农林大学学报: 自然科学版, 2024, 53(6): 797-807. |
| Hu YP, Lin DM, Hu HZ, et al. Isolation, identification and functional characteristics of associative nitrogen-fixing bacteria in upland rice [J]. J Fujian Agric For Univ Nat Sci Ed, 2024, 53(6): 797-807. | |
| [28] | 陈宇丰, 柯春亮, 周登博, 等. 香蕉根际土壤解钾放线菌的筛选鉴定及解钾特性研究 [J]. 生物技术通报, 2015, 31(6): 129-137. |
| Chen YF, Ke CL, Zhou DB, et al. Screening, identification and potassium-dissolving characteristics of potassium-dissolving actinomycete in banana rhizosphere soil [J]. Biotechnol Bull, 2015, 31(6): 129-137. | |
| [29] | de Boer W, Folman LB, Summerbell RC, et al. Living in a fungal world: impact of fungi on soil bacterial niche development [J]. FEMS Microbiol Rev, 2005, 29(4): 795-811. |
| [30] | Silva I, Alves M, Malheiro C, et al. Structural and functional shifts in the microbial community of a heavy metal-contaminated soil exposed to short-term changes in air temperature, soil moisture and UV radiation [J]. Genes, 2024, 15(1): 107. |
| [31] | 王雪, 林超霸, 王丹琴, 等. 嗜麦芽寡养单胞菌PX1的降解芘特性及定殖效能 [J]. 应用生态学报, 2022, 33(9): 2547-2556. |
| Wang X, Lin CB, Wang DQ, et al. Pyrene degradation characteristics and colonization efficiency of Stenotrophomonas maltophilia PX1 [J]. Chin J Appl Ecol, 2022, 33(9): 2547-2556. | |
| [32] | Huang F Y, Chen L, Yang X, et al. Unveiling the impacts 328 of microplastics on cadmium transfer in the soil-plant-human system: A review [J]. Journal of Hazardous Materials, 2024, 477. |
| [33] | Liu ZZ, Awasthi MK, Zhao JF, et al. Unraveling impacts of inoculating novel microbial agents on nitrogen conversion during cattle manure composting: Core microorganisms and functional genes [J]. Bioresour Technol, 2023, 390: 129887. |
| [34] | Helen D, Kim H, Tytgat B, et al. Highly diverse nirK genes comprise two major clades that harbour ammonium-producing denitrifiers [J]. BMC Genomics, 2016, 17: 155. |
| [35] | Pajares S, Bohannan BJM. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils [J]. Front Microbiol, 2016, 7: 1045. |
| [36] | Song T, Zhang XL, Li J, et al. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs) [J]. Sci Total Environ, 2021, 801: 149319. |
| [37] | Hussain B, Ashraf MN, Shafeeq-Ur-Rahman, et al. Cadmium stress in paddy fields: effects of soil conditions and remediation strategies [J]. Sci Total Environ, 2021, 754: 142188. |
| [38] | Ramnarine SDB Jr, Ali O, Jayaraman J, et al. Early transcriptional changes of heavy metal resistance and multiple efflux genes in Xanthomonas campestris pv. campestris under copper and heavy metal ion stress [J]. BMC Microbiol, 2024, 24(1): 81. |
| [39] | Salam LB, Obayori OS, Ilori MO, et al. Effects of cadmium perturbation on the microbial community structure and heavy metal resistome of a tropical agricultural soil [J]. Bioresour Bioprocess, 2020, 7(1): 25. |
| [1] | DONG Xu-kun, CHE Yong-mei, WANG Ming-shuo, LUO Zheng-gang, GUAN En-sen, ZHAO Fang-gui, YE Qing, LIU Xin. Effects of Co-treatment of Nano-silica and Bacillus cereus SS1 on the Growth of Tobacco [J]. Biotechnology Bulletin, 2025, 41(7): 292-298. |
| [2] | LIU Qian, MA Lian-jie, ZHANG Hui, WANG Dong, FAN Mao, LIAO Dun-xiu, ZHAO Zheng-wu, LU Wen-cai. Screening, Identification and Control Effects of Biocontrol Strain TN2 against Pepper Anthracnose [J]. Biotechnology Bulletin, 2025, 41(1): 287-297. |
| [3] | XU Xue-fei, YANG Pan-pan, ZHANG Wen-liang, BIAN Guang-ya, XU Lei-feng, LIU Hui-chao, MING Jun. Distribution of Lily Mottle Virus in the Shoot Tips and Root Tips of Lilium lancifolium [J]. Biotechnology Bulletin, 2024, 40(8): 212-220. |
| [4] | XU Pei-dong, YI Jian-feng, CHEN Di, PAN Lei, XIE Bing-yan, ZHAO Wen-jun. Research Progress in the Biocontrol Secondary Metabolites of Bacillus velezensis [J]. Biotechnology Bulletin, 2024, 40(3): 75-88. |
| [5] | MA Yun-tao, HU Li-na, SUN Wen-jing, TANG Lian-geng, SUN Si-yuan, DENG Xin-yu, SUN Li. Screening and Identification of Antagonistic Bacterium JK2 Against Fire Blight Disease and the Optimization of Its Fermentation Conditions [J]. Biotechnology Bulletin, 2024, 40(11): 202-213. |
| [6] | GAO Yun-yun, YANG Hai-fei, LYU Hu-jie, LIU Yong-xin. Analytical Approaches and Functional Insights for Microbiome Studies [J]. Biotechnology Bulletin, 2024, 40(10): 98-107. |
| [7] | CHU Rui, LI Zhao-xuan, ZHANG Xue-qing, YANG Dong-ya, CAO Hang-hang, ZHANG Xue-yan. Screening and Identification of Antagonistic Bacillus spp. Against Cucumber Fusarium wilt and Its Biocontrol Effect [J]. Biotechnology Bulletin, 2023, 39(8): 262-271. |
| [8] | MA Jun-xiu, WU Hao-qiong, JIANG Wei, YAN Geng-xuan, HU Ji-hua, ZHANG Shu-mei. Screening and Identification of Broad-spectrum Antagonistic Bacterial Strains Against Vegetable Soft Rot Pathogen and Its Control Effects [J]. Biotechnology Bulletin, 2023, 39(7): 228-240. |
| [9] | ZHANG Le-le, WANG Guan, LIU Feng, HU Han-qiao, REN Lei. Isolation, Identification and Biocontrol Mechanism of an Antagonistic Bacterium Against Anthracnose on Mango Caused by Colletotrichum gloeosporioides [J]. Biotechnology Bulletin, 2023, 39(4): 277-287. |
| [10] | LI Kai-hang, WANG Hao-chen, CHENG Ke-xin, YANG Yan, JIN Yi, HE Xiao-qing. Genetic Mechanisms of Plant-microbiome Interaction by Genome-wide Association Analysis Study [J]. Biotechnology Bulletin, 2023, 39(2): 24-34. |
| [11] | LI Ying, SONG Xin-ying, HE Kang, GUO Zhi-qing, YU Jing, ZHANG Xia. Isolation and Identification of Bacillus velezensis ZHX-7 and Its Antibacterial and Growth-promoting Effects [J]. Biotechnology Bulletin, 2023, 39(12): 229-236. |
| [12] | LU Zhao-xiang, WANG Xi-ran, LIAN Xin-lei, LIAO Xiao-ping, LIU Ya-hong, SUN Jian. Advances in the Discovery of Novel Antibiotic-resistant Genes Based on Functional Metagenomics [J]. Biotechnology Bulletin, 2022, 38(9): 17-27. |
| [13] | WANG Ning, LI Hui-xiu, LI Ji, DING Guo-chun. Advances in Compost Regulation of Rhizospheric Microbiome to Suppress Plant Diseases [J]. Biotechnology Bulletin, 2022, 38(5): 4-12. |
| [14] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
| [15] | FU Yong-yao, YI De-yan, YANG Xian-mao, CAI Li, LIANG Yu-hua, LEI Mei-yan, YANG Li-ping. Analysis of Morphological Characteristics and Genetic Variation in a New Germplasm Lilium lancifolium JD-h-15 [J]. Biotechnology Bulletin, 2022, 38(11): 140-150. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||