[1] Batista MB, Dixon R.Manipulating nitrogen regulation in diazotrophic bacteria for agronomic benefit[J]. Biochemical Society Transactions, 2019, 47:603-614. [2] Ro DK, Paradise EM, Ouellet M, et al.Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940-943. [3] Fredens J, Wang K, de la Torre D, et al. Total synthesis of Escherichia coli with a recoded genome[J]. Nature, 2019, 569:514-518. [4] Shao Y, Lu N, Wu Z, et al.Creating a functional single-chromosome yeast[J]. Nature, 2018, 560(7718):331-335. [5] Shen Y, Wang Y, Chen T, et al. Deep functional analysis of synII, a 770-kilobase synthetic yeast chromosome[J]. Science, 2017, 355:eaaf4791. [6] Gibson DG, Benders GA, Andrews-Pfannkoch C, et al.Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome[J]. Science, 2008, 319:1215-20. [7] Dixon RA, Postgate JR.Genetic transfer of nitrogen fixation from Klebsiella pneumoniae to Escherichia coli[J]. Nature, 1972, 237(5350):102-103. [8] Liu D, Liberton M, Yu J, et al.Engineering nitrogen fixation activity in an oxygenic phototroph[J]. MBio, 2018, 9(3):e01029-18. [9] Zhan Y, Yan Y, Deng Z, et al.The novel regulatory ncRNA, NfiS, optimizes nitrogen fixation via base pairing with the nitrogenase gene nifK mRNA in Pseudomonas stutzeri A1501[J]. Proc Natl Acad Sci USA, 2016, 113(30):E4348-E4356. [10] Zhu JB, Li ZG, Wang LW, et al.Temperature sensitivity of a nifA-like gene in Enterobacter cloacae[J]. J Bacteriol, 1986, 166(1):357-359. [11] 戴小密, 刘彦杰, 叶小梅, 等. 接种大豆根瘤菌(Sinorhizobium fredii)遗传工程菌株LMG101对大豆的增产效应[J]. 中国农业科学, 2003, 36(1):66-70. [12] Temme K, Zhao D, Voigt CA.Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca[J]. Proc Natl Acad Sci USA, 2012, 109(18):7085-7090. [13] Burén S, Rubio LM.State of the art in eukaryotic nitrogenase engineering[J]. FEMS Microbiology Letters, 2018, 365(2). doi:10. 1093/femsle/fnx274. [14] Geddes BA, Ryu MH, Mus F, et al.Use of plant colonizing bacteria as chassis for transfer of N2-fixation to cereals[J]. Curr Opin Biotechnol, 2015, 32:216-222. [15] Curatti L, Rubio LM.Challenges to develop nitrogen-fixing cereals by direct nif-gene transfer[J]. Plant Science, 2014, 225:130-137. [16] Cheng Q, Day A, Dowson-Day M, et al.The Klebsiella pneumoniae nitrogenase Fe protein gene(nifH)functionally substitutes for the chlLgene in Chlamydomonas reinhardtii[J]. Biochemical and Biophysical Research Communications, 2005, 329(3):966-975. [17] Ivleva NB, Groat J, Staub JM, et al.Expression of active subunit of nitrogenase via integration into plant organelle genome[J]. PLoS One, 2016, 11(8):e0160951. [18] López-Torrejón G, Jiménez-Vicente E, Buesa JM, et al.Expression of a functional oxygen-labile nitrogenase component in the mitochondrial matrix of aerobically grown yeast[J]. Nat Commun, 2016, 7:11426. [19] Burén S, Young EM, Sweeny EA, et al.Formation of nitrogenase NifDK tetramers in the mitochondria of Saccharomyces cerevisiae[J]. ACS Synth Biol, 2017, 6(6):1043-1055. [20] Yang J, Xie X, Yang M, et al.Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity[J]. Proc Natl Acad Sci USA, 2017, 114(12):E2460-E2465. [21] Wang L, Zhang L, Liu Z, et al.A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli[J]. PLoS Genet, 2013, 9(10):e1003865. [22] Li XX, Liu Q, Liu XM, et al.Using synthetic biology to increase nitrogenase activity[J]. Microb Cell Fact, 2016, 15:43. [23] Wang X, Yang JG, Chen L, et al.Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation[J]. PLoS One, 2013, 8(7):e68677. [24] Yang J, Xie X, Wang X, et al.Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli[J]. Proc Natl Acad Sci USA, 2014, 111(35):E3718-E3725. [25] Yang J, Xie X, Xiang X, et al.Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology[J]. Proc Natl Acad Sci USA, 2018, 115(32):E8509-E8517. [26] Marchetti M, Capela D, Glew M, et al.Experimental evolution of a plant pathogen into a legume symbiont[J]. PLoS Biol, 2010, 8(1):e1000280. [27] Guan SH, Gris C, Cruveiller S, et al.Experimental evolution of nodule intracellular infection in legume symbionts[J]. The ISME Journal, 2013, 7(7):1367-1377. [28] Dai WJ, Zeng Y, Xie ZP, Staehelin C.Symbiosis-promoting and deleterious effects of NopT, a novel type 3 effector of Rhizobium sp. strain NGR234[J]. J Bacteriol, 2008, 190(14):5101-5110. [29] Okazaki S, Kaneko T, Sato S, Saeki K.Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system[J]. Proc Natl Acad Sci USA, 2013, 110(42):17131-17136. [30] Ling J, Wang H, Wu P, et al.Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island[J]. PNAS, 2016, 113(48):13875-13880. [31] Rogers C, Oldroyd GE.Synthetic biology approaches to engineering the nitrogen symbiosis in cereal[J]. J Exp Bot, 2014, 65(8):1939-1946. [32] Mus F, Crook MB, Garcia K, et al.Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes[J]. Appl Environ Microbiol, 2016, 82(13):3698-3710. [33] 李文清, 曹文刚, 李豪, 等. 百脉根4个共生基因在水稻中的共表达及其对水稻转录组的影响[J]. 华中农业大学学报, 2017, 4:55-61. |