Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (8): 206-215.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1377
Previous Articles Next Articles
WANG Zi-ye1,2(), WANG Zhi-gang1,2, YAN Ai-hua1,3()
Received:
2021-11-03
Online:
2022-08-26
Published:
2022-09-14
Contact:
YAN Ai-hua
E-mail:952608380@qq.com;yanjia208323@126.com
WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages[J]. Biotechnology Bulletin, 2022, 38(8): 206-215.
树龄 Tree age/a | 有效序列数 Number of valid sequences | OTU数 Number of OTUs | Simpson指数Simpson index | Shannon指数Shannon index | Chao指数 Chao index | Pielou_e指数 Pielou_e index | 覆盖度 Coverage% |
---|---|---|---|---|---|---|---|
10 | 315 901 | 2 135 | 0.966 | 6.620 | 560.453 | 509.420 | 99.428 |
80 | 288 092 | 1 578 | 0.966 | 6.346 | 416.783 | 395.180 | 99.692 |
200 | 355 357 | 284 | 0.933 | 5.334 | 303.817 | 285.500 | 99.740 |
Table 1 Soil protist data statistics and alpha diversity
树龄 Tree age/a | 有效序列数 Number of valid sequences | OTU数 Number of OTUs | Simpson指数Simpson index | Shannon指数Shannon index | Chao指数 Chao index | Pielou_e指数 Pielou_e index | 覆盖度 Coverage% |
---|---|---|---|---|---|---|---|
10 | 315 901 | 2 135 | 0.966 | 6.620 | 560.453 | 509.420 | 99.428 |
80 | 288 092 | 1 578 | 0.966 | 6.346 | 416.783 | 395.180 | 99.692 |
200 | 355 357 | 284 | 0.933 | 5.334 | 303.817 | 285.500 | 99.740 |
Fig. 1 Principal component analysis(PCA)of rhizosph-ere soil protist Each dot represents a sample,and dots of different colors indicate different groups
Fig. 2 Statistics at phylum level The numbers in the outer circle are species richness,the inner circle numbers are for different age groups,the same below
Fig. 5 Significance analysis of differences in soil physical and chemical indicators The significance level of the mean difference is 0.05. AN is alkaline decomposition nitrogen(mg/kg),AK is potassium ion(mg/kg),Cl is chloride ion(mg/kg),AP is availabfe phosphorus(mg/kg),SOM is organic matter(mg/kg),Na is sodium ion(mg/kg),and TDS is total salt(mg/kg)
Tree age | AK | AP | AN | SOM | TDS | Na | Cl | pH | |
---|---|---|---|---|---|---|---|---|---|
Chao1 | -0.737** | -0.374 | 0.092 | -0.502 | -0.077 | -0.265 | 0.126 | 0.387 | 0.280 |
Simpson | -0.858** | 0.115 | 0.238 | -0.215 | -0.091 | -.538* | 0.163 | 0.695** | -0.161 |
Shannon | -0.808** | -0.021 | 0.146 | -0.311 | -0.242 | -0.469 | 0.218 | 0.643** | 0.030 |
Pielou_e | -0.732** | 0.262 | 0.193 | -0.118 | -0.270 | -0.512 | 0.225 | 0.702** | -0.171 |
Goods_coverage | 0.599* | 0.556* | -0.035 | 0.572* | 0.022 | 0.023 | -0.179 | -0.158 | -0.416 |
Table 2 Correlation analysis between soil physical and chemical properties and biodiversity indexes of soil protist
Tree age | AK | AP | AN | SOM | TDS | Na | Cl | pH | |
---|---|---|---|---|---|---|---|---|---|
Chao1 | -0.737** | -0.374 | 0.092 | -0.502 | -0.077 | -0.265 | 0.126 | 0.387 | 0.280 |
Simpson | -0.858** | 0.115 | 0.238 | -0.215 | -0.091 | -.538* | 0.163 | 0.695** | -0.161 |
Shannon | -0.808** | -0.021 | 0.146 | -0.311 | -0.242 | -0.469 | 0.218 | 0.643** | 0.030 |
Pielou_e | -0.732** | 0.262 | 0.193 | -0.118 | -0.270 | -0.512 | 0.225 | 0.702** | -0.171 |
Goods_coverage | 0.599* | 0.556* | -0.035 | 0.572* | 0.022 | 0.023 | -0.179 | -0.158 | -0.416 |
Fig. 6 Correlation diagram of protis,fungi and bacteria network The inter-node linkage(edge)indicates that there is a correlation between the two nodes being connected,with the orange line indicating a positive correlation and the green line indicating a negative correlation
[1] | 姜勇, 许恒龙, 朱明壮, 等. 胶州湾浮游原生生物时空分布特征——丰度周年变化及与环境因子间的关系[J]. 中国海洋大学学报:自然科学版, 2010, 40(3):17-23. |
Jiang Y, Xu HL, Zhu MZ, et al. Planktonic protists in Jiaozhou Bay, China:annual variation abundance and correlation with environmental conditions[J]. Period Ocean Univ China, 2010, 40(3):17-23. | |
[2] |
Geisen S, Mitchell EAD, Adl S, et al. Soil protists:a fertile frontier in soil biology research[J]. FEMS Microbiol Rev, 2018, 42(3):293-323.
doi: 10.1093/femsre/fuy006 URL |
[3] |
Sun AQ, Jiao XY, Chen QL, et al. Fertilization alters protistan consumers and parasites in crop-associated microbiomes[J]. Environ Microbiol, 2021, 23(4):2169-2183.
doi: 10.1111/1462-2920.15385 URL |
[4] |
Dassen S, Cortois R, Martens H, et al. Differential responses of soil bacteria, fungi, Archaea and protists to plant species richness and plant functional group identity[J]. Mol Ecol, 2017, 26(15):4085-4098.
doi: 10.1111/mec.14175 URL |
[5] | 罗正明, 刘晋仙, 周妍英, 等. 亚高山草地土壤原生生物群落结构和多样性海拔分布格局[J]. 生态学报, 2021, 41(7):2783-2793. |
Luo ZM, Liu JX, Zhou YY, et al. Community structures and diversity patterns of the soil protist communities along an altitudinal gradient in a subalpine grassland[J]. Acta Ecol Sin, 2021, 41(7):2783-2793. | |
[6] |
Simpson AGB, Melkonian M. A review series on the biology of selected protist groups[J]. Protist, 2021, 172(3):125818.
doi: 10.1016/j.protis.2021.125818 URL |
[7] |
Geisen S, Mitchell EAD, Adl S, et al. Soil protists:a fertile frontier in soil biology research[J]. FEMS Microbiol Rev, 2018, 42(3):293-323.
doi: 10.1093/femsre/fuy006 URL |
[8] | 卢明镇. 植物-微生物互惠共生:演化机制与生态功能[J]. 生物多样性, 2020, 28(11):1311-1323. |
Lu MZ. Plant-microbe mutualism:evolutionary mechanisms and ecological functions[J]. Biodivers Sci, 2020, 28(11):1311-1323.
doi: 10.17520/biods.2020409 URL |
|
[9] |
Zhao PS, Guo MS, Gao GL, et al. Community structure and functional group of root-associated Fungi of Pinus sylvestris var. mongolica across stand ages in the Mu Us Desert[J]. Ecol Evol, 2020, 10(6):3032-3042.
doi: 10.1002/ece3.6119 URL |
[10] |
Lipson DA, Wilson RF, Oechel WC. Effects of elevated atmospheric CO2 on soil microbial biomass, activity, and diversity in a chaparral ecosystem[J]. Appl Environ Microbiol, 2005, 71(12):8573-8580.
doi: 10.1128/AEM.71.12.8573-8580.2005 URL |
[11] | 马丽. 豫东不同树龄梨园土壤微生物生态特征[J]. 河南农业科学, 2018, 47(1):37-42. |
Ma L. Soil microbial ecological characteristics of pear orchard with different ages in eastern Henan Province[J]. J Henan Agric Sci, 2018, 47(1):37-42. | |
[12] | 田稼, 孙超, 杨明琰, 等. 黄土高原不同树龄苹果园土壤微生物、养分及pH的相关性[J]. 西北农业学报, 2012, 21(7):138-141, 148. |
Tian J, Sun C, Yang MY, et al. The correlation of soil microbes, soil nutrient and soil pH of different apple tree-age orchards in loess plateau[J]. Acta Agric Boreali Occidentalis Sin, 2012, 21(7):138-141, 148. | |
[13] | 顾美英, 古丽尼沙·沙依木, 张志东, 等. 黑果枸杞不同组织内生细菌群落多样性[J]. 微生物学报, 2021, 61(1):152-166. |
Gu MY, Gulinisha SYM, Zhang ZD, et al. Diversity and function analysis of endophytic bacterial community in different tissues of Lycium ruthenicum Murr[J]. Acta Microbiol Sin, 2021, 61(1):152-166. | |
[14] |
苏宝玲, 韩士杰, 王建国. 根际微域研究中土样采集方法的研究进展[J]. 应用生态学报, 2000, 11(3):477-480.
pmid: 11767659 |
Su BL, Han SJ, Wang JG. Advance in soil sampling methods in rhizosphere microzone study[J]. Chin J Appl Ecol, 2000, 11(3):477-480.
pmid: 11767659 |
|
[15] | 李虎, 贺婧, 刘冲, 等. 农田灰钙土中有机质和碳酸钙对Zn吸附-解吸行为的影响[J]. 中国环境科学, 2015, 35(6):1786-1793. |
Li H, He J, Liu C, et al. Effect of organic matter and calcium carbonate on behaviors of zinc adsorption-desorption on/from Ningxia farmland sierozem soils[J]. China Environ Sci, 2015, 35(6):1786-1793. | |
[16] | 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. |
Bao SD. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000. | |
[17] | 张荟荟, 张学洲, 梁维维, 等. 粮草轮作对北疆平原荒漠灌区土壤理化性质的影响[J]. 草原与草坪, 2021, 41(4):128-133. |
Zhang HH, Zhang XZ, Liang WW, et al. Effects of grain-alfalfa rotation on soil physical and chemical properties in desert irrigation area of northern Xinjiang plain[J]. Grassland Turf, 2021, 41(4):128-133. | |
[18] | Edwards J, Johnson C, Santos-Medellín C, et al. Structure, variation, and assembly of the root-associated microbiomes of rice[J]. Proc Natl Acad Sci USA, 2015, 112(8):E911-E920. |
[19] |
Amaral-Zettler LA, McCliment EA, Ducklow HW, et al. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes[J]. PLoS One, 2009, 4(7):e6372.
doi: 10.1371/journal.pone.0006372 URL |
[20] |
Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities[J]. Appl Environ Microbiol, 2009, 75(23):7537-7541.
doi: 10.1128/AEM.01541-09 URL |
[21] |
Shannon P, Markiel A, Ozier O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.
doi: 10.1101/gr.1239303 pmid: 14597658 |
[22] |
Asiloglu R, Shiroishi K, Suzuki K, et al. Soil properties have more significant effects on the community composition of protists than the rhizosphere effect of rice plants in alkaline paddy field soils[J]. Soil Biol Biochem, 2021, 161:108397.
doi: 10.1016/j.soilbio.2021.108397 URL |
[23] |
Huang X, Wang JJ, Dumack K, et al. Protists modulate fungal community assembly in paddy soils across climatic zones at the continental scale[J]. Soil Biol Biochem, 2021, 160:108358.
doi: 10.1016/j.soilbio.2021.108358 URL |
[24] |
Ceja-Navarro JA, Wang Y, Ning DL, et al. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop[J]. Microbiome, 2021, 9(1):96.
doi: 10.1186/s40168-021-01042-9 pmid: 33910643 |
[25] |
Tedersoo L, Bahram M, Cajthaml T, et al. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent[J]. ISME J, 2016, 10(2):346-362.
doi: 10.1038/ismej.2015.116 pmid: 26172210 |
[26] |
Oliverio AM, Geisen S, Delgado-Baquerizo M, et al. The global-scale distributions of soil protists and their contributions to belowground systems[J]. Sci Adv, 2020, 6(4):eaax8787.
doi: 10.1126/sciadv.aax8787 URL |
[27] |
Lukešová A, Hoffmann L. Soil algae from acid rain impacted forest areas of the Krušné hory Mts. 1. Algal communities[J]. Vegetatio, 1996, 125(2):123-136.
doi: 10.1007/BF00044646 URL |
[28] |
Fránková M, Bojková J, Poulíčková A, et al. The structure and species richness of the diatom assemblages of the Western Carpathian spring fens along the gradient of mineral richness[J]. Fottea, 2009, 9(2):355-368.
doi: 10.5507/fot.2009.035 URL |
[29] |
Antonelli M, Wetzel CE, Ector L, et al. On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils[J]. Ecol Indic, 2017, 75:73-81.
doi: 10.1016/j.ecolind.2016.12.003 URL |
[30] |
Zhao ZB, He JZ, Quan Z, et al. Fertilization changes soil microbiome functioning, especially phagotrophic protists[J]. Soil Biol Biochem, 2020, 148:107863.
doi: 10.1016/j.soilbio.2020.107863 URL |
[31] | 王静, 李彤, 梁健. 不同树龄苹果树根际土壤的微生物生物量碳、酶和养分特征及其变化规律[J]. 陕西师范大学学报:自然科学版, 2021, 49(1):96-104. |
Wang J, Li T, Liang J. Characteristics and changes of the microbial biomass carbon, enzyme activities and nutrients in rhizosphere soil of apple trees at different ages[J]. J Shaanxi Norm Univ Nat Sci Ed, 2021, 49(1):96-104. | |
[32] | 黄晶淼, 刘国鑫, 刘佩杭, 等. 不同种植年限苹果园根际土壤养分、pH及微生物的相关性[J]. 山西农业科学, 2020, 48(8):1263-1266. |
Huang JM, Liu GX, Liu PH, et al. Correlation of nutrient, pH and microorganism in rhizosphere soil of apple orchard with different cultivation years[J]. J Shanxi Agric Sci, 2020, 48(8):1263-1266. | |
[33] |
Guo S, Xiong W, Hang XN, et al. Protists as main indicators and determinants of plant performance[J]. Microbiome, 2021, 9(1):64.
doi: 10.1186/s40168-021-01025-w URL |
[34] | 程明芳, 金继运, 李春花, 等. 氯离子对作物生长和土壤性质影响的研究进展[J]. 浙江农业科学, 2010, 51(1):12-14. |
Cheng MF, Jin JY, Li CH, et al. Progress of research on the effects of chloride ions on crop growth and soil properties[J]. J Zhejiang Agric Sci, 2010, 51(1):12-14. | |
[35] |
Asiloglu R, Sevilir B, Samuel SO, et al. Effect of protists on rhizobacterial community composition and rice plant growth in a biochar amended soil[J]. Biol Fertil Soils, 2021, 57(2):293-304.
doi: 10.1007/s00374-020-01525-1 URL |
[36] |
Asiloglu R, Kenya K, Samuel SO, et al. Top-down effects of protists are greater than bottom-up effects of fertilisers on the formation of bacterial communities in a paddy field soil[J]. Soil Biol Biochem, 2021, 156:108186.
doi: 10.1016/j.soilbio.2021.108186 URL |
[37] |
Xiong W, Li R, Guo S, et al. Microbial amendments alter protist communities within the soil microbiome[J]. Soil Biol Biochem, 2019, 135:379-382.
doi: 10.1016/j.soilbio.2019.05.025 URL |
[38] |
Xiong W, Jousset A, Guo S, et al. Soil protist communities form a dynamic hub in the soil microbiome[J]. ISME J, 2018, 12(2):634-638.
doi: 10.1038/ismej.2017.171 pmid: 29028001 |
[39] |
Rosenberg K, Bertaux J, Krome K, et al. Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana[J]. ISME J, 2009, 3(6):675-684.
doi: 10.1038/ismej.2009.11 pmid: 19242534 |
[40] |
Henkes GJ, Kandeler E, Marhan S, et al. Interactions of mycorrhiza and protists in the rhizosphere systemically alter microbial community composition, plant shoot-to-root ratio and within-root system nitrogen allocation[J]. Front Environ Sci, 2018, 6:117.
doi: 10.3389/fenvs.2018.00117 URL |
[41] | 张玉琴, 李文均, 郝涤非, 等. 异常球菌属的分类及应用研究进展[J]. 微生物学通报, 2006, 33(6):133-137. |
Zhang YQ, Li WJ, Hao DF, et al. Review of studies on the taxonomy and application of the genus Deinococcus[J]. Microbiology, 2006, 33(6):133-137. | |
[42] |
Dahal RH, Kim J. Ferrovibrio soli sp. nov., a novel cellulolytic bacterium isolated from stream bank soil[J]. Int J Syst Evol Microbiol, 2018, 68(1):427-431.
doi: 10.1099/ijsem.0.002527 URL |
[43] | Kiss S, Paşca D, Drăgan-Bularda M. Studies of the soil enzymological effects of industrial emissions originating from a point source(an industrial plant)[M]// Enzymology of Disturbed Soils. Amsterdam:Elsevier, 1998:69-115. |
[44] |
Fuji M, Miura C, Yamamoto T, et al. Relative effectiveness of Tulasnella fungal strains in orchid mycorrhizal symbioses between germination and subsequent seedling growth[J]. Symbiosis, 2020, 81(1):53-63.
doi: 10.1007/s13199-020-00681-0 URL |
[45] |
Lee SD. Angustibacter peucedani sp. nov., isolated from rhizosphere soil[J]. Int J Syst Evol Microbiol, 2013, 63(Pt_2):744-750.
doi: 10.1099/ijs.0.042275-0 URL |
[46] |
Dahal RH, Chaudhary DK, Kim J. Acinetobacter halotolerans sp. nov., a novel halotolerant, alkalitolerant, and hydrocarbon degrading bacterium, isolated from soil[J]. Arch Microbiol, 2017, 199(5):701-710.
doi: 10.1007/s00203-017-1349-2 pmid: 28220203 |
[1] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[2] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[3] | XU Xiao-wen, LI Jin-cang, HAI Du, ZHA Yu-ping, SONG Fei, WANG Yi-xun. Identification and Diversity Analysis of Mycoviruses from the Phytopathogenic Fungus Colletotrichum spp. of Walnut [J]. Biotechnology Bulletin, 2023, 39(3): 278-289. |
[4] | LI Ying, LONG Chang-mei, JIANG Biao, HAN Li-zhen. Colonization on the Peanuts of Two Plant-growth Promoting Rhizobacteria Strains and Effects on the Bacterial Community Structure of Rhizosphere [J]. Biotechnology Bulletin, 2022, 38(9): 237-247. |
[5] | WANG Zi-yin, LIU Bing-ru, LI Zi-hao, ZHAO Xiao-yu. Characteristics of Soil Bacterial Community Structure in the Different Developmental Stages of Desert Grassland Caragana korshinskii Kom. Nebkhas [J]. Biotechnology Bulletin, 2022, 38(7): 205-214. |
[6] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[7] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[8] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[9] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[10] | XIE Guo-zhen, TANG Yuan, NING Xiao-mei, QIU Ji-hui, TAN Zhou-jin. Effects of Dendrobium officinale Polysaccharides on the Intestinal Mucosal Structure and Microbiota in Mice Fed a High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(2): 150-157. |
[11] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[12] | LIU Shuang, YAO Jia-ni, SHEN Cong, DAI Jin-xia. Fluorescent Quantitative PCR of nifH Gene and Diversity Analysis of Nitrogen-fixing Bacteria in the Rhizosphere Soil of Caragana spp. of Desert Grassland [J]. Biotechnology Bulletin, 2022, 38(12): 252-262. |
[13] | CHEN Yu-jie, ZHENG Hua-bao, ZHOU Xin-yan. Modified High-throughput Sequencing Reveals the Effects of Different Algicides towards Algal Community [J]. Biotechnology Bulletin, 2022, 38(11): 70-79. |
[14] | LI Ting-ting, DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan, LI Rong, SHEN Qi-rong. Effects of Ralstonia solanacearum Infection on Soil Fungal Community Diversity [J]. Biotechnology Bulletin, 2022, 38(10): 195-203. |
[15] | YAN Hui-lin, LU Guang-xin, DENG Ye, GU Song-song, YAN Cheng-liang, MA Kun, ZHAO Yang-an, ZHANG Hai-juan, WANG Ying-cheng, ZHOU Xue-li, DOU Sheng-yun. Effects of Rhizobium Seed Dressing on the Soil Microbial Community of Grass-legume Mixtures in Alpine Regions [J]. Biotechnology Bulletin, 2022, 38(10): 204-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||