生物技术通报 ›› 2018, Vol. 34 ›› Issue (2): 38-44.doi: 10.13560/j.cnki.biotech.bull.1985.2017-1011
范素素, 田芳, 何晨阳
收稿日期:
2017-11-28
出版日期:
2018-02-26
发布日期:
2018-03-12
作者简介:
范素素,博士后,研究方向:分子植物病理学;E-mail:1986fansusu@163.com
基金资助:
FAN Su-su, TIAN Fang, HE Chen-yang
Received:
2017-11-28
Published:
2018-02-26
Online:
2018-03-12
摘要: 植物病原细菌III型分泌系统(T3SS)在其毒性表达及与寄主互作中具有重要的功能。水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae,Xoo)hrp基因簇编码了T3SS装置,将毒性效应子蛋白分泌到水稻细胞内,抑制和破坏寄主免疫反应,或诱导感病基因表达,以达到成功侵染的目的。hrp基因表达受到严格调控,在模拟水稻内环境的贫瘠营养培养基中被诱导表达;hrp和效应子基因均受调控蛋白HrpG和HrpX的调控。此外,hrp基因还受到其它毒性调控网络重要因子的调控,包括双组分调控因子、转录调控因子、DNA/RNA结合蛋白、糖代谢和c-di-GMP信号因子。结合本实验室的研究结果,综述了Xoo T3SS表达调控及其致病机理的研究进展,以期为水稻细菌病害发生机理的解析及其有效防控措施提供一些新见解、思路和途径。
范素素, 田芳, 何晨阳. 水稻白叶枯病菌T3SS基因表达及其调控网络[J]. 生物技术通报, 2018, 34(2): 38-44.
FAN Su-su, TIAN Fang, HE Chen-yang. Regulation and Expression of Genes Encoding the Type III Secretion System in Xanthomonas oryzae pv. oryzae[J]. Biotechnology Bulletin, 2018, 34(2): 38-44.
[1] Alfano J, Collmer A.The type III(Hrp)secretion pathway of plant pathogenic bacteria:trafficking harpins, Avr proteins, and death[J]. J Bacteriol, 1997, 179:5655-5662. [2] Furutani A, Takaoka M, Sanada H.Identification of novel type III secretion effectors in Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2009, 22:96-106. [3] Jones J, Dangl J.The plant immune system[J]. Nature, 2009, 444:323-329. [4] Ou S.Bacterial leaf blight[M]//. Ou S. Rice diseases. Kew:Commonwealth Mycological Institute, 1985:70-74. [5] Furutani A, Tsuge S, Ohnishi K, et al.Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae[J]. J Bacteriol, 2004, 186:1374-1380. [6] Ochiai H, Inoue Y, Takeya M, et al.Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequences to its race diversity[J]. Jpn Agric Res Q, 2005, 39:275-287. [7] Oku T, Tanaka K, Iwamoto M, et al.Structural conservation of the hrp gene cluster in Xanthomonas oryzae pv. oryzae[J]. J Gen Plant Pathol, 2004, 70:159-167. [8] Tsuge S, Furutani A, Ikawa Y.Regulatory network of hrp gene expression in Xanthomonas oryzae pv. oryzae[J]. J Gen Plant Pathol, 2014, 80:303-313. [9] Fan S, Tian F, Li J, et al.Identification of plant phenolic compounds that suppress the Xanthomonas oryzae virulence in rice via targeting type III secretion system[J]. Mol Plant Pathol, 2017, 18:555-568. [10] 何晨阳, 吴茂森. 水稻—白叶枯病菌互作的功能基因组学研究[J]. 植物保护, 2007, 33:95-96. [11] Wengelnik K, Marie C, Russel M, et al.Expression and localization of HrpA1, a protein of Xanthomonas campestris pv. vesicatoria essential for pathogenicity and induction of the hypersensitive reaction[J]. J Bacteriol, 1996, 178:1061-1069. [12] Furutani A, Tsuge S, Oku T, et al.Hpa1 secretion via type III secretion system in Xanthomonas oryzae pv. oryza e[J]. J Gen Plant Pathol, 2003, 69:271-275. [13] Tsuge S, Furutani A, Fukunaka R, et al.Expression of Xanthomonas oryzae pv. oryzae hrp genes in XOM2, a novel synthetic medium[J]. J Gen Plant Pathol, 2002, 68:363-371. [14] Takeuchi Y, Tohbaru M, Sato A.Polysaccharides in primary cell walls of rice cells in suspension culture[J]. Phytochemistry, 1994, 35:361-363. [15] Ray S, Rajeshwari R, Sonti RV.Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase[J]. Mol Plant Microbe Interact, 2000, 13:394-40. [16] Tsuge S, Ochiai H, Inoue Y, et al.Involvement of phosphoglucose isomerase in pathogenicity of Xanthomonas oryzae pv. oryzae[J]. Phytopathology, 2004, 94:478-483. [17] Gophna U, Ron EZ, Graur D.Bacterial type III secretion systems are ancient and evolved by multiple horizontal-transfer events[J]. Gene, 2003, 312:151-163. [18] Hutcheson S, Bretz J, Sussan T, et al.Enhancer binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in Pseudomonas syringae strains[J]. J Bacteriol, 2001, 183:5589-5598. [19] Wei Z, Beer S. hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors[J]. J Bacteriol, 1995, 177:6201-6210. [20] Xiao Y, Heu S, Yi J, et al.Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes[J]. J Bacteriol, 1994, 176:1025-1036. [21] Bretz J, Losada L, Lisboa K, et al.Lon protease functions as a negative regulator of type III protein secretion in Pseudomonas syringae[J]. Mol Microbiol, 2002, 45:397-409. [22] Laub M, Goulian M.Specificity in two-component signal transduction pathways[J]. Annu Rev Genet, 2007, 41:121-145. [23] Wengelnik K, Bonas U.HrpXv, an AraC-type regulator activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria[J]. J Bacteriol, 1996, 178:3462-3469. [24] Tsuge S, Terashima S, Furutani A, et al.Effects on promoter activity of base substitutions in the cis-acting regulatory element of HrpXo regulons in Xanthomonas oryzae pv. oryzae[J]. J Bacteriol, 2005, 187:2308-2314. [25] Furutani A, Nakayama T, Ochiai H, et al.Identification of novel HrpXo regulons preceded by two cis acting elements, a plant-inducible promoter box and a -10 box like sequence, from the genome database of Xanthomonas oryzae pv. oryzae[J]. FEMS Microbiol Lett, 2006, 259:133-141. [26] Koebnik R, Kruger A, Thieme F, et al.Specific binding of the Xanthomonas campestris pv. vesicatoria AraCtype transcriptional activator HrpX to plant-inducible promoter boxes[J]. J Bacteriol, 2006, 188:7652-7660. [27] Guo W, Cai L, Zou H, et al.Ketoglutarate transport protein KgtP is secreted through the type III secretion system and contributes to virulence in Xanthomonas oryzae pv. oryzae[J]. Appl Environ Microbiol, 2012, 78:5672-5681. [28] Doyle E, Stoddard B, Voytas D, et al.TAL effectors:highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins[J]. Trends Cell Biol, 2013, 23:390-398. [29] Tang J, Liu Y, Barber C, et al.Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris[J]. Mol Gen Genet, 1991, 226:409-417. [30] Dow J, Crossman L, Findlay K, et al.Biofilm dispersal in Xanthomonas campestrisis controlled by cell-cell signaling and is required for full virulence to plants[J]. Proc Natl Acad Sci USA, 2003, 100:10995-11000. [31] Dow J, Fouhy Y, Lucey J, et al.The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants[J]. Mol Plant Microbe Interact, 2006, 19:1378-1384. [32] He Y, Ng A, Xu M, et al.Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signaling network[J]. Mol Microbiol, 2007, 64:281-292. [33] Huang D, Tang D, Liao Q, et al.The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG[J]. Mol Plant Microbe Interact, 2009, 22:321-329. [34] 管文静, 吴茂森, 何晨阳. 水稻白叶枯病菌核苷酸信号受体蛋白Clpxoo的分子鉴定及其功能分析[J]. 微生物学报, 2009, 49:32-37. [35] 霍欢, 孙蕾, 田芳, 等. 水稻白叶枯病菌群体感应系统对T3SS基因表达的调控作用分析[J]. 植物病理学报, 2012, 42:620-625. [36] 孙蕾, 吴茂森, 陈华民, 等. 水稻白叶枯病菌Δrpfxoo基因缺失突变体DSF信号产生和毒性表达[J]. 微生物学报, 2010, 50:717-723. [37] Lee S, Jeong K, Han S, et al.The Xanthomonas oryzae pv. oryzae PhoPQ two component system is required for AvrXA21 activity, hrpG expression, and virulence[J]. J Bacteriol, 2008, 190:2183-2197. [38] Burdman S, Shen Y, Lee S, et al.RaxH/RaxR:a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity[J]. Mol Plant Microbe Interact, 2004, 17:602-612. [39] Lee S, Han S, Bartley L, et al.Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity[J]. Proc Natl Acad Sci USA, 2006, 103:18395-18400. [40] Zhang S, He Y, Xu M, et al.A putative colRXC1049-colSXC1050 two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses[J]. Res Microbiol, 2008, 159:569-578. [41] Tsuge S, Nakayama T, Terashima S, et al.Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae[J]. J Bacteriol, 2006, 188:4158-4162. [42] Dorman CJ.H-NS:a universal regulator for a dynamic genome[J]. Nat Rev Microbiol, 2004, 2:391-400. [43] Fang FC, Rimsky S.New insights into transcriptional regulation by H-NS[J]. Curr Opin Microbiol, 2008, 11:113-120. [44] Feng J, Song Z, Duan C, et al.The xrvA gene of Xanthomonas oryzae pv. oryzae, encoding an H-NS-like protein, regulates virulence in rice[J]. Microbiology, 2009, 155:3033-3044. [45] Kametani-Ikawa Y, Tsuge S, Furutani A, et al.An H-NS-like protein involved in the negative regulation of hrp genes in Xanthomonas oryzae pv. oryzae[J]. FEMS Microbiol Lett, 2011, 319:58-64. [46] Liu Y, Long J, Shen D, et al.Xanthomonas oryzae pv. oryzae requires H-NS-family protein XrvC to regulate virulence during rice infection[J]. FEMS Microbiol Lett, 2016, 363(10). doi:10. 1093/femsle/fnw067. [47] Chao N, Wei K, Chen Q, et al.The rsmA-like gene rsmAXcc of Xanthomonas campestris pv. campestris is involved in the control of various cellular processes, including pathogenesis[J]. Mol Plant Microbe Interact, 2008, 21:411-423. [48] Zhu P, Zhao S, Tang J, Feng J.The rsmA-like gene rsmA(Xoo)of Xanthomonas oryzae pv. oryzae regulates bacterial virulence and production of diffusible signal factor[J]. Mol Plant Pathol, 2011, 12:227-37. [49] Ikawa Y, Tsuge S.The quantitative regulation of the hrp regulator HrpX is involved in sugar-source-dependent hrp gene expression in Xanthomonas oryzae pv. oryzae[J]. FEMS Microbiol Lett, 2016, 363(10). doi:10. 1093/femsle/fnw071. [50] Guo W, Zou L, Li Y, et al.Fructose-bisphosphate aldolase exhibits functional roles between carbon metabolism and the hrp system in rice pathogen Xanthomonas oryzae pv. oryzicola[J]. PLoS One, 2012, 7:e31855. [51] Rashid M, Ikawa Y, Tsuge S.GamR, the LysR-type galactose metabolism regulator, regulates hrp gene expression via transcriptional activation of two key hrp regulators, HrpG and HrpX, in Xanthomonas oryzae pv. oryzae[J]. Appl Environ Microbiol, 2016, 82:3947-58. [52] 管文静, 吴茂森, 何晨阳. c-di-GMP信号途径对细菌致病性的调控作用[J]. 微生物学通报, 2009, 36:427-431. [53] 薛丁榕, 田芳, 李海云, 等. 水稻白叶枯病菌第二信使c-di-GMP代谢酶基因的预测和分析[J]. 生物技术通报, 2015 (11):131-138. [54] 杨凤环, 田芳, 陈华民, 等. 病原细菌受体介导的c-di-GMP信号传导及其调控机制[J]. 植物保护, 2017, 43:9-14. [55] Yang F, Tian F, Sun L, et al.A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2012, 25:1361-1369. [56] 梁士敏, 杨凤环, 管文静, 等. 水稻白叶枯病菌EAL结构域蛋白VieAxoo基因缺失突变和功能分析[J]. 微生物学报, 2011, 51:29-34. [57] Yang F, Qian S, Tian F, et al.The GGDEF-domain protein GdpX1 attenuates motility exopolysaccharide production and virulence in Xanthomonas oryzae pv. oryzae[J]. J Appl Microbiol, 2016, 120:1646-1657. [58] 李潇桐, 杨凤环, 梁士敏, 等. 水稻白叶枯病菌毒性表达的负调控因子PXO_02944的分子鉴定[J]. 中国农业科学, 2014, 47:2563-2570. [59] Yang F, Tian F, Chen H, et al.The Xanthomonas oryzae pv. oryzae PilZ-domain proteins function differentially in cyclic di-GMP binding and regulation of virulence and motility[J]. Appl Environ Microbiol, 2015, 81:4358-4367. [60] Yang F, Tian F, Li X, et al.The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae[J]. Mol Plant Microbe Interact, 2014, 27:578-589. |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 李帜奇, 袁月, 苗荣庆, 庞秋颖, 张爱琴. 盐胁迫盐芥和拟南芥褪黑素含量及合成相关基因表达模式分析[J]. 生物技术通报, 2023, 39(5): 142-151. |
[3] | 刘奎, 李兴芬, 杨沛欣, 仲昭晨, 曹一博, 张凌云. 青杄转录共激活因子PwMBF1c的功能研究与验证[J]. 生物技术通报, 2023, 39(5): 205-216. |
[4] | 赖瑞联, 冯新, 高敏霞, 路喻丹, 刘晓驰, 吴如健, 陈义挺. 猕猴桃过氧化氢酶基因家族全基因组鉴定与表达分析[J]. 生物技术通报, 2023, 39(4): 136-147. |
[5] | 郭三保, 宋美玲, 李灵心, 尧子钊, 桂明明, 黄胜和. 斑地锦查尔酮合酶基因及启动子的克隆与分析[J]. 生物技术通报, 2023, 39(4): 148-156. |
[6] | 陈强, 邹明康, 宋家敏, 张冲, 吴隆坤. 甜瓜LBD基因家族的鉴定和果实发育进程中的表达分析[J]. 生物技术通报, 2023, 39(3): 176-183. |
[7] | 姚晓文, 梁晓, 陈青, 伍春玲, 刘迎, 刘小强, 税军, 乔阳, 毛奕茗, 陈银华, 张银东. 二斑叶螨抗性木薯木质素合成途径基因表达特性研究[J]. 生物技术通报, 2023, 39(2): 161-171. |
[8] | 李彦霞, 王晋鹏, 冯芬, 包斌武, 董益闻, 王兴平, 罗仍卓么. 大肠杆菌型奶牛乳房炎对产奶性状相关基因表达的影响[J]. 生物技术通报, 2023, 39(2): 274-282. |
[9] | 冯策婷, 江律, 刘鑫颖, 罗乐, 潘会堂, 张启翔, 于超. 单叶蔷薇NAC基因家族鉴定及干旱胁迫响应分析[J]. 生物技术通报, 2023, 39(11): 283-296. |
[10] | 吴柏增, 何琪, 姚方杰, 赵梦然. 糙皮侧耳乳酸脱氢酶鉴定及其菌丝高温胁迫下表达特征分析[J]. 生物技术通报, 2023, 39(11): 350-359. |
[11] | 姜南, 石杨, 赵志慧, 李斌, 赵熠辉, 杨俊彪, 闫家铭, 靳雨璠, 陈稷, 黄进. 镉胁迫下水稻OsPT1的表达及功能分析[J]. 生物技术通报, 2023, 39(1): 166-174. |
[12] | 段敏杰, 李怡斐, 杨小苗, 王春萍, 黄启中, 黄任中, 张世才. 辣椒锌指蛋白DnaJ-Like基因家族鉴定及对高温胁迫的表达响应[J]. 生物技术通报, 2023, 39(1): 187-198. |
[13] | 袁星, 郭彩华, 刘金明, 亢超, 全绍文, 牛建新. 核桃CONSTANS-Like基因家族全基因组鉴定及表达分析[J]. 生物技术通报, 2022, 38(9): 167-179. |
[14] | 郭宾会, 宋丽. 大豆孢囊线虫侵染对乙烯合成及信号传导基因表达调控的研究[J]. 生物技术通报, 2022, 38(8): 150-158. |
[15] | 张淼, 杨露露, 贾岩龙, 王天云. DNA甲基化和组蛋白甲基化修饰的表观遗传调控作用研究进展[J]. 生物技术通报, 2022, 38(7): 23-30. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 844
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 312
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||