[1] Wang Z, Gerstein M, Snyder M.RNA-Seq:a revolutionary tool for transcriptomics[J]. Nat Rev Genet, 2009, 10(1):57-63. [2] Mccarthy A.Third generation DNA sequencing:pacific biosciences’ single molecule real time technology[J]. Chem Biol, 2010, 17(7):675-676. [3] Branton D, Deamer DW, Marziali A, et al.The potential and challenges of nanopore sequencing[J]. Nat Biotechnol, 2008, 26(10):1146-1153. [4] Wenger AM, Peluso P, Rowell WJ, et al. Highly-accurate long-read sequencing improves variant detection and assembly of a human genome[J]. bioRxiv, 2019:doi:https://doi.org/10.1101/519025. [5] Chu Y, Corey DR.RNA sequencing:platform selection, experimental design, and data interpretation[J]. Nucleic Acid Ther, 2012, 22(4):271-274. [6] Hutvagner G, Zamore PD.A microRNA in a multiple-turnover RNAi enzyme complex[J]. Science, 2002, 297(5589):2056-2060. [7] Lam MT, Li W, et al.Enhancer RNAs and regulated transcriptional programs[J]. Trends Biochem Sci, 2014, 39(4):170-182. [8] Barrett SP, Salzman J.Circular RNAs:analysis, expression and potential functions[J]. Development, 2016, 11:1838-1847. [9] Ashwal-Fluss R, Meyer M, et al.circRNA biogenesis competes with pre-mRNA splicing[J]. Mol Cell, 2014, 56(1):55-66. [10] Abe N, Matsumoto K, et al.Rolling circle translation of circular RNA in living human cells[J]. Sci Rep, 2015, 5:16435. [11] Kristensen LS, Hansen TB, Veno MT, et al.Circular RNAs in cancer:opportunities and challenges in the field[J]. Oncogene, 2018, 37(5):555-565. [12] Eberwine J, Yeh H, et al.Analysis of gene expression in single live neurons[J]. Proc Natl Acad Sci USA, 1992, 89(7):3010-3014. [13] Brady G, Barbara M, Iscove NN.Representative in vitro cDNA amplification from individual hemopoietic cells and colonies[J]. Methads in Molecular and Cellular Biology, 1990, 1(2):17-25. [14] Tang F, Barbacioru C, Wang Y, et al.mRNA-Seq whole-transcriptome analysis of a single cell[J]. Nat Methods, 2009, 6(5):377-382. [15] Levin JZ, Yassour M, Adiconis X, et al.Comprehensive comparative analysis of strand-specific RNA sequencing methods[J]. Nat Methods, 2010, 7(9):709-715. [16] Bolger AM, Lohse M, Usadel B.Trimmomatic:a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120. [17] Wang L, Wang S, Li W.RSeQC:quality control of RNA-seq experiments[J]. Bioinformatics, 2012, 28(16):2184-2185. [18] Langmead B, Trapnell C, Pop M, et al.Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J]. Genome Biol, 2009, 10(3):R25. [19] Langmead B, Salzberg SL.Fast gapped-read alignment with Bowtie 2[J]. Nat Methods, 2012, 9(4):357-359. [20] Dobin A, Davis CA, Schlesinger F, et al.STAR:ultrafast universal RNA-seq aligner[J]. Bioinformatics, 2013, 29(1):15-21. [21] Kim D, Langmead B, et al.HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 4:357-360. [22] Li H, Durbin R.Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14):1754-1760. [23] Trapnell C, Roberts A, Goff L, et al.Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks[J]. Nat Protoc, 2012, 7(3):562-578. [24] Guttman M, et al.Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs[J]. Nat Biotechnol, 2010, 28(5):503-510. [25] Grabherr MG, Haas BJ, Yassour M, et al.Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nat Biotechnol, 2011, 29(7):644-652. [26] Robertson G, Schein J, et al.De novo assembly and analysis of RNA-seq data[J]. Nat Methods, 2010, 7(11):909-912. [27] Zerbino DR. Using the Velvet de novo assembler for short-read sequencing technologies[J]. Current Protocols In Bioinformatics, 2010, Chapter 11:Unit-11. 5. [28] Haas BJ, et al.De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis[J]. Nat Protoc, 2013, 8(8):1494-1512. [29] Ritchie ME, Phipson B, Wu D, et al.Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7):e47. [30] Trapnell C, Williams BA, Pertea G, et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation[J]. Nat Biotechnol, 2010, 28(5):511-515. [31] Anders S, Huber W.Differential expression analysis for sequence count data[J]. Genome Biol, 2010, 11(10):R106-R118. [32] Love MI, Huber W, Anders S.Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12):550-571. [33] Robinson MD, Mccarthy DJ, Smyth GK. edgeR:a Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140. [34] Kharchenko PV, Silberstein L, Scadden DT.Bayesian approach to single-cell differential expression analysis[J]. Nat Methods, 2014, 11(7):740-742. [35] Bacher R, Kendziorski C.Design and computational analysis of single-cell RNA-sequencing experiments[J]. Genome Biol, 2016, 17:63. [36] Machnicka MA, Milanowska K, et al.MODOMICS:a database of RNA modification pathways-2013 update[J]. Nucleic acids research, 2013, 41(Database issue):D262-D267. [37] Li H, Handsaker B, et al.The sequence alignment/map format and SAMtools[J]. Bioinformatics, 2009, 25(16):2078-2079. [38] Li H.A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data[J]. Bioinformatics, 2011, 27(21):2987-2993. [39] Mckenna A, Hanna M, et al.The genome analysis toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Res, 2010, 20(9):1297-1303. [40] Klepikova AV, Kasianov AS, Gerasimov ES, et al.A high resolution map of the Arabidopsis thaliana developmental transcriptome based on RNA-seq profiling[J]. Plant J, 2016, 88(6):1058-1070. [41] Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase:from microRNA sequences to function[J]. Nucleic Acids Res, 2019, 47(D1):D155-D162. [42] Liu XX, Mei WB, Soltis PS, et al.Detecting alternatively spliced transcript isoforms from single-molecule long-read sequences without a reference genome[J]. Molecular Ecology Resources, 2017, 17(6):1243-1256. [43] Wang B, Regulski M, Tseng E, et al.A comparative transcriptional landscape of maize and sorghum obtained by single-molecule sequencing[J]. Genome Research, 2018, 28(6):921-932. [44] Zhao X, Li J, Lian B, et al.Global identification of Arabidopsis lncRNAs reveals the regulation of MAF4 by a natural antisense RNA[J]. Nat Commun, 2018, 9(1):5056. [45] Ré DA, Lang PLM, Yones C, et al. Alternative use of miRNA-biogenesis co-factors in plants at low temperatures[J]. Development, 2019, 146(5). pii:dev1721932. [46] Haque A, Engel J, Teichmann SA, et al.A practical guide to single-cell RNA-sequencing for biomedical research and clinical applications[J]. Genome Med, 2017, 9(1):75. [47] Levitin HM, Yuan J, et al.Single-cell transcriptomic analysis of tumor heterogeneity[J]. Trends Cancer, 2018, 4(4):264-268. [48] Moffitt JR, Bambah-Mukku D, et al. Molecular, spatial,functional single-cell profiling of the hypothalamic preoptic region[J]. Science, 2018, 362(6416). pii:eaau5324. |