[1] |
Perrier X, De Langhe E, Donohue M, et al. Multidisciplinary perspectives on banana(Musa spp.)domestication[J]. Proc Natl Acad Sci USA, 2011, 108(28): 11311-11318.
doi: 10.1073/pnas.1102001108
pmid: 21730145
|
[2] |
Fu N, Ji MY, Rouard M, et al. Comparative plastome analysis of Musaceae and new insights into phylogenetic relationships[J]. BMC Genomics, 2022, 23(1): 223.
|
[3] |
Dewi S, Ahmad F, Oktorida Khastini R, et al. Bananas and their wild relatives in pandeglang, Indonesia[J]. HAYATI J Biosci, 2023, 30(6): 1071-1091.
|
[4] |
Tripathi JN, Ntui VO, Malarvizhi M, et al. Improvement of nutraceutical traits of banana: new breeding techniques[M]// Compendium of Crop Genome Designing for Nutraceuticals. Singapore: Springer, 2023: 1-33.
|
[5] |
Rocha AJ, Soares JMDS, Nascimento FDS, et al. Improvements in the resistance of the banana species to Fusarium wilt: a systematic review of methods and perspectives[J]. J Fungi, 2021, 7(4): 249.
|
[6] |
Olufemi OS. Exploring banana production in Africa for food security and economic growth—a short review[J]. Food Nutr Chem, 2024, 2(1): 125.
|
[7] |
Navy T, Mardy S. A review on industrial banana production in Cambodia[J]. Int J Sustain Appl Sci, 2023, 1(6): 783-788.
|
[8] |
Platonovskiy NG, Ibrasheva LR, Obukhova NI, et al. International banana trade: volumes, countries, and trends[M]//Popkova EG, Bogoviz AV, Sergi BS, et al. Sustainable Development of the Agrarian Economy Based on Digital Technologies and Smart Innovations. Cham: Springer, 2024: 25-30.
|
[9] |
Martin G, Cottin A, Baurens FC, et al. Interspecific introgression patterns reveal the origins of worldwide cultivated bananas in New Guinea[J]. Plant J, 2023, 113(4): 802-818.
|
[10] |
Martin G, Cardi C, Sarah G, et al. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana[J]. Plant J, 2020, 102(5): 1008-1025.
|
[11] |
吴元立, 黄秉智, 杨护, 等. 抗枯萎病优质特色香蕉新品种粉杂1号的选育[J]. 果树学报, 2022, 39(12): 2450-2454.
|
|
Wu YL, Huang BZ, Yang H, et al. reeding of Fenza No. 1, a new high-quality and special banana variety with high resistance against Fusarium oxysporum f. sp. cubense[J]. J Fruit Sci, 2022, 39(12): 2450-2454.
|
[12] |
Penna S, Ghag SB, Ganapathi TR, et al. Induced genetic diversity in banana[M]// Genetic Diversity in Horticultural Plants. Cham: Springer, 2019: 273-297.
|
[13] |
Aguilar Morán JF. Improvement of Cavendish banana cultivars through conventional breeding[J]. Acta Hortic, 2013(986): 205-208.
|
[14] |
曾鸿运, 吴元立, 黄秉智. 中国香蕉育种研究进展[J]. 果树学报, 2023, 40(11): 2446-2465.
|
|
Zeng HY, Wu YL, Huang BZ. Research and utilization progress in banana germplasm resources in China[J]. J Fruit Sci, 2023, 40(11): 2446-2465.
|
[15] |
Chabi M, Dassou AG, Adoukonou-Sagbadja H, et al. Variation in symptom development and infectivity of banana bunchy top disease among four cultivars of Musa sp[J]. Crops, 2023, 3(2): 158-169.
|
[16] |
Bolfarini ACB, Souza JMA, Putti FF, et al. Physicochemical characteristics of unripe and ripe banana ‘FHIA 18’ submitted to phosphorus fertilizer over three production cycles[J]. Semina Ciências Agrárias, 2020, 41(1): 33.
|
[17] |
Annor GA, Asamoah-Bonti P, Sakyi-Dawson E. Fruit physical characteristics, proximate, mineral and starch characterization of FHIA 19 and FHIA 20 plantain and FHIA 03 cooking banana hybrids[J]. SpringerPlus, 2016, 5(1): 796.
|
[18] |
Meghwal M, Jayachandran A. Advances in production technology of banana[M]// Amit K, Om P, Rahul D, et al. A Textbook on Advances in Production Technology of Tropical and Subtropical Fruits. New Delhi: New Vishal Publication, 2023:60.
|
[19] |
Bugaud C, Alter P, Daribo MO, et al. Comparison of the physico-chemical characteristics of a new triploid banana hybrid, FLHORBAN 920, and the Cavendish variety[J]. J Sci Food Agric, 2009, 89(3): 407-413.
|
[20] |
Hu WF, Yang BM, He ZH, et al. Magnesium may be a key nutrient mechanism related to Fusarium wilt resistance: a new banana cultivar(Zhongjiao No. 9)[J]. PeerJ, 2021, 9: e11141.
|
[21] |
Ssali RT, Kiggundu A, Lorenzen J, et al. Inheritance of resistance to Fusarium oxysporum f. sp. cubense race 1 in bananas[J]. Euphytica, 2013, 194(3): 425-430.
|
[22] |
Arinaitwe IK, Teo CH, Kayat F, et al. Evaluation of banana germplasm and genetic analysis of an F1 population for resistance to Fusarium oxysporum f. sp. cubense race 1[J]. Euphytica, 2019, 215(10): 175.
|
[23] |
Uwimana B, Nakato GV, Kanaabi R, et al. Identification of the loci associated with resistance to banana Xanthomonas wilt(Xanthomonas vasicola pv. musacearum)using DArTSeq markers and continuous mapping[J]. Horticulturae, 2024, 10(1): 87.
|
[24] |
Ahmad F, Martawi NM, Poerba YS, et al. Genetic mapping of Fusarium wilt resistance in a wild banana Musa acuminata ssp. malaccensis accession[J]. Theor Appl Genet, 2020, 133(12): 3409-3418.
|
[25] |
Chen A, Sun JM, Martin G, et al. Identification of a major QTL-controlling resistance to the subtropical race 4 of Fusarium oxysporum f. sp. cubense in Musa acuminata ssp. malaccensis[J]. Pathogens, 2023, 12(2): 289.
|
[26] |
Anuradha C, Ramajayam D, Mayilvaganan M, et al. Molecular characterization of Red banana and its somaclonal variant: a comprehensive study[J]. 3 Biotech, 2024, 14(1): 19.
|
[27] |
Biswas MK, Yi GJ. Genes and markers: application in banana crop improvement[M]// Banana: Genomics and Transgenic Approaches for Genetic Improvement. Singapore: Springer, 2016: 35-50.
|
[28] |
Inta W, Traiperm P, Ruchisansakun S, et al. Evolution and classification of Musaceae based on male floral morphology[J]. Plants, 2023, 12(8): 1602.
|
[29] |
Brisibe EA, Ubi GM, Ekanem NG. Descriptive and multivariate analyses of morphotaxonomic and yield-related traits in inflorescence dichotomous cultivars of Musa species(AAB genome)[J]. Genet Resour Crop Evol, 2021, 68(8): 3357-3372.
|
[30] |
Sawant GB, Dalvi VV, Ambavane AR, et al. Evaluation of qualitative trraits in banana(Musa spp.)genomes[J]. International Journal of Genetics, 2018, 10(11):548-551.
|
[31] |
Pillay M. The genetic homogeneity of Uganda's East African highland bananas(Mutika/Lujugira)does not match the extensive morphological variation identified in this subgroup[J]. Int J Plant Biol, 2024, 15(2): 267-280.
|
[32] |
Christelová P, Valárik M, Hřibová E, et al. A platform for efficient genotyping in Musa using microsatellite markers[J]. AoB Plants, 2011, 2011: plr024.
|
[33] |
Hinge VR, Shaikh IM, Chavhan RL, et al. Assessment of genetic diversity and volatile content of commercially grown banana(Musa spp.)cultivars[J]. Sci Rep, 2022, 12: 7979.
|
[34] |
Taheri S, Lee Abdullah T, Yusop M, et al. Mining and development of novel SSR markers using next generation sequencing(NGS)data in plants[J]. Molecules, 2018, 23(2): 399.
|
[35] |
Harnelly E, Kusuma HI, Thomy Z, et al. Internal Transcribed Spacer(ITS)gene as an accurate DNA barcode for identification of macroscopic fungus in Aceh[J]. Biodiversitas, 2022, 23(5): 2369-2378.
|
[36] |
Nehal N, Choudhary B, Nagpure A, et al. DNA barcoding: a modern age tool for detection of adulteration in food[J]. Crit Rev Biotechnol, 2021, 41(5): 767-791.
|
[37] |
Li LF, Häkkinen M, Yuan YM, et al. Molecular phylogeny and systematics of the banana family(Musaceae)inferred from multiple nuclear and chloroplast DNA fragments, with a special reference to the genus Musa[J]. Mol Phylogenet Evol, 2010, 57(1): 1-10.
|
[38] |
Liu AZ, Kress WJ, Li DZ. Phylogenetic analyses of the banana family(Musaceae)based on nuclear ribosomal(ITS)and chloroplast(trnL-F)evidence[J]. Taxon, 2010, 59(1): 20-28.
|
[39] |
Hřibová E, Čížková J, Christelová P, et al. The ITS1-5.8S-ITS2 sequence region in the Musaceae: structure, diversity and use in molecular phylogeny[J]. PLoS One, 2011, 6(3): e17863.
|
[40] |
Nwakanma DC, Pillay M, Okoli BE, et al. PCR-RFLP of the ribosomal DNA internal transcribed spacers(ITS)provides markers for the A and B genomes in Musa L[J]. Theor Appl Genet, 2003, 108(1): 154-159.
pmid: 12955208
|
[41] |
Zeng H, Huang B, Xu L, et al. Banana classification using sanger sequencing of the ribosomal DNA internal transcribed spacers(ITS)[J/OL]. Preprints, 2024. DOI: 10.20944/preprints202402.1260.v1.
|
[42] |
Batte M, Nyine M, Uwimana B, et al. Significant progressive heterobeltiosis in banana crossbreeding[J]. BMC Plant Biol, 2020, 20(1): 489.
|
[43] |
Rouard M, Sardos J, Sempéré G, et al. A digital catalog of high-density markers for banana germplasm collections[J]. Plants People Planet, 2022, 4(1): 61-67.
|
[44] |
Hou BH, Tsai YH, Chiang MH, et al. Cultivar-specific markers, mutations, and chimerisim of Cavendish banana somaclonal variants resistant to Fusarium oxysporum f. sp. cubense tropical race 4[J]. BMC Genomics, 2022, 23(1): 470.
|