[1] Plump AS, Smith JD, Hayek T, et al. Severe hypercholesterolemia and atherosclerosis in apolipoprotein E deficient mice created by homologous recombination in ES cells[J]. Cell, 1992, 71(2):343-353. [2] Capecchi MR. Altering the genome by homologous recombination [J]. Science, 1989, 244(4910):1288-1292. [3] Wood AJ, Lo TW, Zeitler B, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040):307-307. [4] Lo TW, Pickle CS, Lin S, et al. Precise and heritable genome editing in evolutionarily diverse nematodes using TALENs and CRISPR/Cas9 to engineer insertions and deletions[J]. Genetics, 2013, 195(2):331-348. [5] Urnov FD, Miller JC, Lee YL, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases[J]. Nature, 2005, 435(7042):646-651. [6] Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing[J]. Nat Biotechnol, 2007, 25(7):778-785. [7] Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type Ⅲ effectors[J]. Science, 2009, 326(5959):1509-1512. [8] Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6069):816-821. [9] Hsu PD, Lander ES, Zhang F. Development and applications of crispr-cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278. [10] Chylinski K, Le Rhun A, Charpentier E. The tracrRNA and Cas9 families of type Ⅱ CRISPR/Cas immunity systems[J]. RNA Biol, 2013, 10(5):726-737. [11] Niu Y, Shen B, Cui Y, et al. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014, 156(4):836-843. [12] Liang P, Xu Y, Zhang X, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes[J]. Protein Cell, 2015, 6(5):363-372. [13] Kang X, He W, Huang Y, et al. Introducing precise genetic modifications into human 3PN embryos by CRISPR/Cas-mediated genome editing[J]. J Assist Reprod Gen, 2016, 33(5):581-588. [14] Zhu S, Li W, Liu J, et al. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library[J]. Nat Biotechnol, 2016, 34(12):1279-1286. [15] Cyranoski D. CRISPR gene-editing tested in a person for the first time[J]. Nature, 2016, 539(7630):479. [16] Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771. [17] Dong D, Ren K, Qiu X, et al. The crystal structure of Cpf1 in complex with CRISPR RNA[J]. Nature, 2016, 532(7600):522-526. [18] Mali P, Aach J, Stranges PB, et al. CAS9 transcriptional activators for target specificity screening and paried nickases for cooperative genome engineering[J]. Nat Biotechnol, 2013, 31(9):833-838. [19] Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells[J]. Nat Biotechnol, 2016, 34(8):863-868. [20] Song JJ, Smith KK, Hannon GJ, et al. Crystal structure of Argonaute and its implications for RISC slicer activity[J]. Science, 2004, 305(5689):1434-1437. [21] Yuan YR, Pei Y, Ma JB, et al. Crystal structure of A. aeolicus argonaute, a site-specific DNA-guided endoribonuclease, provides insights into RISC- mediated MRNA cleavage[J]. Mol Cell, 2005, 19(3):405-419. [22] Junho KH, Ivan O, Alexei AA. Prokaryotic Argonautes defend genomes against invasive DNA[J]. Trend Biochem Sci, 2014, 39(6):257-259. [23] Meister G. Argonaute protein:Functinal insights and emerging roles[J]. Nat Rev Genet, 2013, 14(7):447-459. [24] Swarts DC, Jore MM, Westra ER, et al. DNA-guided DNA interference by a prokaryotic Argonaute[J]. Nature, 2014, 507(7491):258-261. [25] Daan CS, Jorrit WH, Ismael H, et al. Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA[J]. Nucleic Acids Res, 2015, 43(10):5120-5129. [26] Gao F, Shen XZ, Jiang F, et al. DNA-guided genome editing using the Natronobacterium gregoryi Argonaute[J]. Nat Biotechnol, 2016, 34(7):768-773. [27] Qi J, Dong Z, Shi Y, et al. NgAgo-based fabp11a gene knockdown causes eye developmental defects in zebrafish[J]. Cell Res, 2016, 26(12):1349-1352. [28] Burgess S, Cheng L, Gu F, et al. Questions about NgAgo[J]. Protein Cell, 2016, 7(12):913-915. [29] Lee SH, Turchiano G, Ata H, et al. Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute[J]. Nat Biotechnol, 2016, 35(1):17-18. [30] Imanishi M, Nakamura A, Morisaki T, et al. Positive and negative cooperativity of modularly assembled zinc fingers[J]. Biochem Bioph Res Co, 2009, 387(3): 440-443. [31] Maeder ML, Thibodeau-Beganny S, Osiak A, et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification[J]. Mol Cell, 2008, 31(2):294-301. [32] Juillerat A, Dubois G, Valton J, et al. Comprehensive analysis of the specificity of transcription activator-like effector nucleases[J]. Nucleic Acids Res, 2014, 42(8):5390-5402. [33] Smith J, Grizot S, Arnould S, et al. A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences[J]. Nucleic Acids Res, 2006, 34(22):e149. [34] Harrington JJ, Lieber MR. The characterization of a mammalian DNA structure-specific endonuclease[J]. EMBO J, 1994, 13(5):1235-1246. [35] Kaiser MW, Lyamicheva N, Ma W, et al. A comparison of eubacterial and archaeal structure-specific 5'-exonucleases[J]. J Biol Chem, 1999, 274(30):21387-21394. [36] Kao HI, Henricksen LA, Liu Y, et al. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate[J]. J Biol Chem, 2002, 277(17):14379-14389. [37] Xu S, Cao S, Zou B, et al. An alternative novel tool for DNA editing without target sequence limitation:the structure-guided nuclease[J]. Genome Biol, 2016, 17(1):186. [38] Isabella Wolcott. Could the CRISPR-Cas9 genome editing system be replaced by the NgAgo-gDNA system? [J]. Express Biology, 2016, 1(1):10-15. |