[1] 国际农业生物技术应用服务组织. 2017年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2018, 38(6):1-8. [2] Hong B, Du Y, Mukerji P, et al.Safety assessment of food and feed from GM crops in Europe:evaluating EFSA’s alternative framework for the rat 90-day feeding study[J]. Journal of Agricultural and Food Chemistry, 2017, 65(27):5545-5560. [3] Lu BR.Challenges of transgenic crop commercialization in China[J]. Nature Plants, 2016, 2(6):16077. [4] 刘华清, 李胜清, 陈浩. 转基因作物安全评价及检测技术[J]. 华中农业大学学报:社会科学版, 2010(6):14-19. [5] Pickett JA.The essential need for GM crops[J]. Nature Plants, 2016, 2(6):16078. [6] 张艳军, 谢明, 彭德良. 转基因作物对土壤微生物的影响[J]. 应用生态学报, 2013, 24(9):2685-2690. [7] 谷岩, 邱强, 王振民, 等. 连作大豆根际微生物群落结构及土壤酶活性[J]. 中国农业科学, 2012, 45(19):3955-3964. [8] 梁晋刚, 张秀杰. 转基因作物对土壤微生物多样性影响的研究方法[J]. 生物技术通报, 2017, 33(10):111-116. [9] Liu B, Zeng Q, Yan FM, et al.Effects of transgenic plants on soil microorganisms[J]. Plant & Soil. 2005, 271(1-2):1-13. [10] 鄂志国, 陈欣, 职桂叶. 转基因作物对土壤生物的影响[J]. 生态与农村环境学报, 2004, 20(3):73-76. [11] Xue K.Carbon allocation and field residue decomposition dynamics of Mon863 Bt corn and public perceptions of transgenic crops in China[D]. Cornell University, 2009. [12] 郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 1(3):456-461. [13] 陈丰, 彭欣, 华小梅, 等. 富含硫氨基酸转基因大豆对根际土壤有机元素含量和微生物群落多样性的影响[J]. 大豆科学, 2012(2):259-265. [14] 梁晋刚, 辛龙涛, 栾颖, 等. 转cry1Ie基因抗虫玉米对根际微生物群落碳代谢的影响[J]. 中国农业科技导报, 2019, 21(2):104-110:1-7. [15] 章秋艳, 赵建宁, 李刚, 等. 不同耐草甘膦转基因大豆对根际土壤固氮细菌多样性的影响[J]. 农业环境科学学报, 2013, 32(9):1827-1833. [16] Wei M, Tan F, Zhu H, et al.Impact of Bt-transgenic rice(SHK601)on soil ecosystems in the rhizosphere during crop development[J]. Plant Soil & Environment, 2012, 58(5):217-223. [17] 沈彬, 洪鑫, 曹越平, 等. 抗草甘膦转基因大豆对根际土壤细菌及根瘤菌的影响[J]. 应用生态学报, 2018, 29(9):2988-2996. [18] 王丽娟, 李刚, 赵建宁, 等. 转基因大豆对根际土壤微生物群落功能多样性的影响[J]. 农业环境科学学报, 2013, 32(2):290-298. [19] Lou Y, Davis AS, Yannarell AC.Interactions between allelochemicals and the microbial community affect weed suppression following cover crop residue incorporation into soil[J]. Plant & Soil, 2016, 399(1-2):357-371. [20] Mahnert A, Moissleichinger C, Berg G.Microbiome interplay:plants alter microbial abundance and diversity within the built environment[J]. Frontiers in Microbiology, 2015, 6(887):887. [21] 吕晓波, 王宏燕, 刘琦, 等. 抗草甘膦转基因大豆(RRS)在黑土生态系统种植的安全性研究[J]. 大豆科学, 2009, 28 (2):260-265. [22] Kremer RJ, Means NE.Glyphosate affects soybean root exudation and rhizosphere microorganisms[J]. International Journal of Environmental Analytical Chemistry, 2005, 85:1165-1174. [23] 叶飞, 宋存江, 陶剑, 等. 转基因棉花种植对根际土壤微生物群落功能多样性的影响[J]. 应用生态学报, 2010(2):386-390. [24] 乌兰图雅, 赵建宁, 李刚, 等. 转双价基因抗虫棉对土壤微生物群落多样性的影响[J]. 生态学杂志, 2012, 31(10):2486-2492. [25] Garland JL, Mills AL.Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8):2351-2359. [26] Ogram A.Soil molecular microbial ecology at age 20:methodological challenges for the future[J]. Soil Biology and Biochemistry, 2000, 32(11):1499-1504. [27] Liu Y, Li X, Cai K, et al.Identification of benzoic acid and 3-phenylpropanoic acid in tobacco root exudates and their role in the growth of rhizosphere microorganisms[J]. Applied Soil Ecology, 2015, 93:78-87. |