生物技术通报 ›› 2021, Vol. 37 ›› Issue (9): 203-211.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1505
朱雯(), 汤莹莹, 孙昕旸, 周明, 张子军, 陈兴勇()
收稿日期:
2020-12-11
出版日期:
2021-09-26
发布日期:
2021-10-25
作者简介:
朱雯,女,博士,研究方向:反刍动物营养;E-mail: 基金资助:
ZHU Wen(), TANG Ying-ying, SUN Xin-yang, ZHOU Ming, ZHANG Zi-jun, CHEN Xing-yong()
Received:
2020-12-11
Published:
2021-09-26
Online:
2021-10-25
摘要:
为进一步实施低蛋白饲粮饲喂技术,探索低蛋白饲粮对山羊肝脏功能的调控机制。利用RNA-Seq技术对饲喂正常、低蛋白饲粮安徽白山羊肝脏组织转录组分析;利用GO富集分析和KEGG通路注释对差异表达基因功能进行解析并进行差异基因的PPI互作分析。结果表明,相比对照组,低蛋白组山羊肝脏组织中基因表达量变化在2倍以上的基因有62个(FDR<0.05),其中,上调表达基因49个,下调表达基因13个,部分基因与蛋白质代谢、能量及糖脂代谢相关;GO富集分类结果显示差异基因共富集至42个条目,主要集中在结合、催化活性以及分子转运活性等功能;KEGG富集分析显示差异基因显著(P<0.05)富集到23条代谢通路,主要包括味觉传导、脂肪酸生物合成以及胰岛素信号通路等;PPI蛋白质互作分析发现,PPP1R3B,FASN和IRS2三个核心位置差异基因富集到胰岛素信号通路。上述结果表明,低蛋白饲粮可显著影响肉羊肝脏糖脂代谢,促进肝脏脂肪酸的合成和脂质过氧化,降低肝脏糖异生,为低蛋白饲粮的营养调控提供理论依据。
朱雯, 汤莹莹, 孙昕旸, 周明, 张子军, 陈兴勇. 低蛋白饲粮对山羊肝脏转录组的影响[J]. 生物技术通报, 2021, 37(9): 203-211.
ZHU Wen, TANG Ying-ying, SUN Xin-yang, ZHOU Ming, ZHANG Zi-jun, CHEN Xing-yong. Effect of Low Crude Protein Diet on the Liver Transcriptome Sequencing of Goats[J]. Biotechnology Bulletin, 2021, 37(9): 203-211.
项目 Item | 对照组CK | 低蛋白组LCP |
---|---|---|
原料 Ingredient | ||
玉米 Ground corn grain | 13.0 | 21.0 |
豆粕 Soybean meal | 24.0 | 16.0 |
麸皮 Wheat bran | 7.5 | 7.5 |
小苏打 Sodium bicarbonate Salt | 1.0 | 1.0 |
食盐Salt | 1.0 | 1.0 |
磷酸氢钙 Dicalcium phosphate | 0.5 | 0.5 |
石粉 Calcium carbonate | 1.0 | 1.0 |
预混料Premix | 1.0 | 1.0 |
花生秧 Peanut vine | 28.0 | 28.0 |
羊草 Chinese wild rye | 22.0 | 22.0 |
合计Total | 100.0 | 100.0 |
营养水平Chemical Composition | ||
有机物 Organic matter | 86.3 | 88.3 |
粗蛋白质 Crude protein | 14.8 | 12.0 |
中性洗涤纤维 Neutral detergent fiber | 46.4 | 44.8 |
酸性洗涤纤维 Acid detergent fiber | 31.8 | 31.2 |
粗脂肪 Ether extract | 3.74 | 3.27 |
粗灰分 Ash | 13.7 | 11.7 |
代谢能 Metabolizable energy | 10.5 | 10.5 |
表1 试验饲粮组成及营养水平(干物质基础)
Table 1 Ingredients and chemical composition of the expe-rimental diets(dry matter basis)
项目 Item | 对照组CK | 低蛋白组LCP |
---|---|---|
原料 Ingredient | ||
玉米 Ground corn grain | 13.0 | 21.0 |
豆粕 Soybean meal | 24.0 | 16.0 |
麸皮 Wheat bran | 7.5 | 7.5 |
小苏打 Sodium bicarbonate Salt | 1.0 | 1.0 |
食盐Salt | 1.0 | 1.0 |
磷酸氢钙 Dicalcium phosphate | 0.5 | 0.5 |
石粉 Calcium carbonate | 1.0 | 1.0 |
预混料Premix | 1.0 | 1.0 |
花生秧 Peanut vine | 28.0 | 28.0 |
羊草 Chinese wild rye | 22.0 | 22.0 |
合计Total | 100.0 | 100.0 |
营养水平Chemical Composition | ||
有机物 Organic matter | 86.3 | 88.3 |
粗蛋白质 Crude protein | 14.8 | 12.0 |
中性洗涤纤维 Neutral detergent fiber | 46.4 | 44.8 |
酸性洗涤纤维 Acid detergent fiber | 31.8 | 31.2 |
粗脂肪 Ether extract | 3.74 | 3.27 |
粗灰分 Ash | 13.7 | 11.7 |
代谢能 Metabolizable energy | 10.5 | 10.5 |
序号No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') | 产物长度Product size/bp | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | PC-F | TGCGGTCCATCCTGGTCAA | 87 | 63.3 |
PC-R | ACGCCAGGTAGGACCAGTT | |||
2 | FASN-F | ACCTCGTGAAGGCTGTGACTCA | 196 | 59.5 |
FASN-R | TGAGTCGAGGCCAAGGTCTGAA | |||
3 | IGF1-F | TCTTGAAGCAGGTGAAGATGCC | 144 | 60 |
IGF1-R | ACACGAACTGGAGAGCATCC | |||
4 | IRS2-F | AAGCACCTATGCCAGCATCAAC | 129 | 60.5 |
IRS2-R | GAGGATTGCTGAGGTCATTTAGGTC | |||
5 | CYP4A1-F | CTGCTCCGCTTTGAGCTACT | 125 | 59 |
CYP4A1-R | GCTCCACAACGGAATTAGTGG | |||
6 | β-actin-F | TCGTGCGTGACATTAAAGAG | 134 | 61.3 |
β-actin-R | ATTGCCGATAGTGATGACCT |
表2 qRT-PCR反应所用引物
Table 2 Primers used for qRT-PCR
序号No. | 引物名称Primer name | 引物序列Primer sequence(5'-3') | 产物长度Product size/bp | 退火温度Annealing temperature/℃ |
---|---|---|---|---|
1 | PC-F | TGCGGTCCATCCTGGTCAA | 87 | 63.3 |
PC-R | ACGCCAGGTAGGACCAGTT | |||
2 | FASN-F | ACCTCGTGAAGGCTGTGACTCA | 196 | 59.5 |
FASN-R | TGAGTCGAGGCCAAGGTCTGAA | |||
3 | IGF1-F | TCTTGAAGCAGGTGAAGATGCC | 144 | 60 |
IGF1-R | ACACGAACTGGAGAGCATCC | |||
4 | IRS2-F | AAGCACCTATGCCAGCATCAAC | 129 | 60.5 |
IRS2-R | GAGGATTGCTGAGGTCATTTAGGTC | |||
5 | CYP4A1-F | CTGCTCCGCTTTGAGCTACT | 125 | 59 |
CYP4A1-R | GCTCCACAACGGAATTAGTGG | |||
6 | β-actin-F | TCGTGCGTGACATTAAAGAG | 134 | 61.3 |
β-actin-R | ATTGCCGATAGTGATGACCT |
样品名称 Sample | 原始数据 Raw data | 筛选后的数据 Clean reads | 总映射 Total mapped reads | 多重映射 Multiple mapped reads | 唯一映射 Uniquely mapped reads | Q30 Q30 proportion/% | GC含量 GC proportion/% |
---|---|---|---|---|---|---|---|
CK_1 | 58 699 326 | 58 606 316 | 56 533 208(96.53%) | 2 878 815(4.92%) | 53 654 393(91.61%) | 92.09 | 53.06 |
CK_2 | 46 719 458 | 46 647 138 | 45 044 045(96.64%) | 2 365 004(5.07%) | 42 679 041(91.56%) | 92.23 | 53.54 |
CK_3 | 46 920 008 | 46 857 532 | 44 876 131(95.83%) | 2 253 785(4.81%) | 42 622 346(91.02%) | 92.32 | 52.88 |
LCP_1 | 58 554 166 | 58 465 664 | 56 561 055(96.83%) | 3 000 129(5.14%) | 53 560 926(91.69%) | 92.32 | 52.65 |
LCP_2 | 47 060 314 | 46 984 954 | 45 257 361(96.43%) | 2 532 160(5.40%) | 42 725 201(91.03%) | 92.49 | 53.79 |
LCP_3 | 62 169 938 | 62 063 962 | 59 438 635(95.88%) | 4 063 987(6.56%) | 55 374 648(89.32%) | 91.87 | 53.59 |
表3 各样品测序质量
Table 3 Sequencing data quality of each sample
样品名称 Sample | 原始数据 Raw data | 筛选后的数据 Clean reads | 总映射 Total mapped reads | 多重映射 Multiple mapped reads | 唯一映射 Uniquely mapped reads | Q30 Q30 proportion/% | GC含量 GC proportion/% |
---|---|---|---|---|---|---|---|
CK_1 | 58 699 326 | 58 606 316 | 56 533 208(96.53%) | 2 878 815(4.92%) | 53 654 393(91.61%) | 92.09 | 53.06 |
CK_2 | 46 719 458 | 46 647 138 | 45 044 045(96.64%) | 2 365 004(5.07%) | 42 679 041(91.56%) | 92.23 | 53.54 |
CK_3 | 46 920 008 | 46 857 532 | 44 876 131(95.83%) | 2 253 785(4.81%) | 42 622 346(91.02%) | 92.32 | 52.88 |
LCP_1 | 58 554 166 | 58 465 664 | 56 561 055(96.83%) | 3 000 129(5.14%) | 53 560 926(91.69%) | 92.32 | 52.65 |
LCP_2 | 47 060 314 | 46 984 954 | 45 257 361(96.43%) | 2 532 160(5.40%) | 42 725 201(91.03%) | 92.49 | 53.79 |
LCP_3 | 62 169 938 | 62 063 962 | 59 438 635(95.88%) | 4 063 987(6.56%) | 55 374 648(89.32%) | 91.87 | 53.59 |
图2 RNA-Seq数据(A)与qRT-PCR(B)基因表达水平的比较
Fig.2 Comparison and verification of the quantitative results for selected genes from the RNA-Seq(A)and qRT-PCR analyses(B)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differential expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 20 | 40.8 |
GO:0003824 | Catalytic activity | 10 | 20.4 |
GO:0060089 | Molecular transducer activity | 2 | 4.08 |
表4 上调差异表达基因的GO功能注释分析(分子功能)
Table 4 GO functional annotation of up-regulated expressed genes(molecular function)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differential expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 20 | 40.8 |
GO:0003824 | Catalytic activity | 10 | 20.4 |
GO:0060089 | Molecular transducer activity | 2 | 4.08 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0009987 | Cellular process | 25 | 51.0 |
GO:0044699 | Single-organism process | 22 | 44.9 |
GO:0008152 | Metabolic process | 22 | 44.9 |
GO:0065007 | Biological regulation | 17 | 34.7 |
GO:0050789 | Regulation of biological process | 16 | 32.7 |
GO:0050896 | Response to stimulus | 11 | 22.4 |
GO:0032501 | Multicellular organismal process | 10 | 20.4 |
GO:0023052 | Signaling | 9 | 18.4 |
GO:0032502 | Developmental process | 9 | 18.4 |
GO:0048519 | Negative regulation of biological process | 8 | 16.3 |
GO:0071840 | Cellular component organization or biogenesis | 8 | 16.3 |
GO:0040011 | Locomotion | 4 | 8.2 |
GO:0040007 | Growth | 1 | 2.0 |
表5 上调差异表达基因的 GO 功能注释分析(生物过程)
Table 5 GO functional annotation of up-regulated expressed genes(biological process)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0009987 | Cellular process | 25 | 51.0 |
GO:0044699 | Single-organism process | 22 | 44.9 |
GO:0008152 | Metabolic process | 22 | 44.9 |
GO:0065007 | Biological regulation | 17 | 34.7 |
GO:0050789 | Regulation of biological process | 16 | 32.7 |
GO:0050896 | Response to stimulus | 11 | 22.4 |
GO:0032501 | Multicellular organismal process | 10 | 20.4 |
GO:0023052 | Signaling | 9 | 18.4 |
GO:0032502 | Developmental process | 9 | 18.4 |
GO:0048519 | Negative regulation of biological process | 8 | 16.3 |
GO:0071840 | Cellular component organization or biogenesis | 8 | 16.3 |
GO:0040011 | Locomotion | 4 | 8.2 |
GO:0040007 | Growth | 1 | 2.0 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 6 | 46.2 |
GO:0003824 | Catalytic activity | 2 | 15.4 |
GO:0060089 | Molecular transducer activity | 2 | 15.4 |
表6 下调差异表达基因的GO功能注释分析(分子功能)
Table 6 GO functional annotation of down-regulated expressed genes(molecular function)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0005488 | Binding | 6 | 46.2 |
GO:0003824 | Catalytic activity | 2 | 15.4 |
GO:0060089 | Molecular transducer activity | 2 | 15.4 |
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0044699 | Single-organism process | 6 | 46.2 |
GO:0065007 | Biological regulation | 5 | 38.5 |
GO:0009987 | Cellular process | 5 | 38.5 |
GO:0050789 | Regulation of biological process | 5 | 38.5 |
GO:0008152 | Metabolic process | 3 | 23.1 |
GO:0032501 | Multicellular organismal process | 3 | 23.1 |
GO:0050896 | Response to stimulus | 3 | 23.1 |
GO:0023052 | Signaling | 3 | 23.1 |
GO:0071840 | Cellular component organization or biogenesis | 2 | 15.4 |
GO:0048519 | Negative regulation of biological process | 2 | 15.4 |
GO:0032502 | Developmental process | 2 | 15.4 |
GO:0040007 | Growth | 1 | 7.69 |
GO:0051179 | Localization | 1 | 7.69 |
GO:0040011 | Locomotion | 1 | 7.69 |
表7 下调差异表达基因的 GO 功能注释分析(生物过程)
Table 7 GO functional annotation of down-regulated expressed genes(biological process)
GO分类号 GO No. | 功能描述 Function description | 差异基因数量(DEGs) Number of differentially expressed genes | 差异基因占比 Proportion of differential expressed genes/% |
---|---|---|---|
GO:0044699 | Single-organism process | 6 | 46.2 |
GO:0065007 | Biological regulation | 5 | 38.5 |
GO:0009987 | Cellular process | 5 | 38.5 |
GO:0050789 | Regulation of biological process | 5 | 38.5 |
GO:0008152 | Metabolic process | 3 | 23.1 |
GO:0032501 | Multicellular organismal process | 3 | 23.1 |
GO:0050896 | Response to stimulus | 3 | 23.1 |
GO:0023052 | Signaling | 3 | 23.1 |
GO:0071840 | Cellular component organization or biogenesis | 2 | 15.4 |
GO:0048519 | Negative regulation of biological process | 2 | 15.4 |
GO:0032502 | Developmental process | 2 | 15.4 |
GO:0040007 | Growth | 1 | 7.69 |
GO:0051179 | Localization | 1 | 7.69 |
GO:0040011 | Locomotion | 1 | 7.69 |
通路名称 Pathway name | 通路编号 Pathway No. | 富集基因数目 Number of enriched genes | 基因名称 Gene name | P值 P value |
---|---|---|---|---|
Taste transduction | ko04742 | 5 | SCNN1B、MSTRG.15055、15056、3072、8035 | 4.23E-05 |
Fatty acid biosynthesis | ko00061 | 2 | Acyl-coenzyme A thioesterase 4 | 9.13E-04 |
Insulin signaling pathway | ko04910 | 4 | PPP1R3B、FASN、IRS2、SOCS2 | 1.30E-03 |
Retinol metabolism | ko00830 | 3 | LOC102181495、LOC108635023、LOC108635036 | 3.85E-03 |
Transcriptional misregulation in cancers | ko05202 | 4 | IGF1、IL1R2、KDM6A、LOC108634619 | 4.21E-03 |
表8 低蛋白日粮饲喂条件下山羊肝脏组织富集显著性差异的前5条通路
Table 8 Top 5 pathways enriched from the differential expressed liver genes of low crude protein fed goat
通路名称 Pathway name | 通路编号 Pathway No. | 富集基因数目 Number of enriched genes | 基因名称 Gene name | P值 P value |
---|---|---|---|---|
Taste transduction | ko04742 | 5 | SCNN1B、MSTRG.15055、15056、3072、8035 | 4.23E-05 |
Fatty acid biosynthesis | ko00061 | 2 | Acyl-coenzyme A thioesterase 4 | 9.13E-04 |
Insulin signaling pathway | ko04910 | 4 | PPP1R3B、FASN、IRS2、SOCS2 | 1.30E-03 |
Retinol metabolism | ko00830 | 3 | LOC102181495、LOC108635023、LOC108635036 | 3.85E-03 |
Transcriptional misregulation in cancers | ko05202 | 4 | IGF1、IL1R2、KDM6A、LOC108634619 | 4.21E-03 |
[1] | 郭伟, 李文娟, 等. 反刍动物低蛋白日粮应用的研究进展[J]. 饲料工业, 2020, 41(1):47-51. |
Guo Wei, Li WJ, et al. Advances in the application of ruminant low protein diets[J]. Feed Industry, 2020, 41(1):47-51. | |
[2] | Shahjalal M, Bishwas M, et al. Growth and carcass characteristics of goats given diets varying protein concentration and feeding level[J]. Asian-Australasian J Anim Sci, 2000, 13(5):613-618. |
[3] | Wang DF, Zhou LL, Zhou HL, et al. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats[J]. Journal of Animal Science, 2015, 86(2):166-173. |
[4] | Kristensen NB. Splanchnic metabolism of volatile fatty acids in the dairy cow[J]. Int J Fundam Appl Res, 2005, 80(80):3-10. |
[5] |
Li YX, Feng XP, Wang HL, et al. Transcriptome analysis reveals corresponding genes and key pathways involved in heat stress in Hu sheep[J]. Cell Stress Chaperones, 2019, 24(6):1045-1054.
doi: 10.1007/s12192-019-01019-6 URL |
[6] | Lv XF, Chen L, He SS, et al. Effect of nutritional restriction on the hair follicles development and skin transcriptome of Chinese merino sheep[J]. Animals(Basel), 2020, 10(6):1058. |
[7] |
Zhu W, Xu W, Wei CC, et al. Effects of decreasing dietary crude protein level on growth performance, nutrient digestion, serum metabolites, and nitrogen utilization in growing goat kids(Capra hircus)[J]. Animals, 2020, 10(1):151.
doi: 10.3390/ani10010151 URL |
[8] | National Research Council. Nutrient Requirements of Small Ruminants, Sheep, Goats, Cervids, and New World Camelids[M]. Washington DC: National Academy Press, USA, 2007. |
[9] |
Clark EL, Bush SJ, McCulloch MEB, et al. A high resolution atlas of gene expression in the domestic sheep(Ovis aries)[J]. PLoS Genet, 2017, 13(9):e1006997.
doi: 10.1371/journal.pgen.1006997 URL |
[10] |
Jitrapakdee S, St Maurice M, Rayment I, et al. Structure, mechanism and regulation of pyruvate carboxylase[J]. Biochemical Journal, 2008, 413(3):369-387.
doi: 10.1042/BJ20080709 pmid: 18613815 |
[11] |
Kido K, Ato S, Yokokawa T, et al. Acute resistance exercise-induced IGF1 expression and subsequent GLUT4 translocation[J]. Physiological Reports, 2016, 4(16):e12907.
doi: 10.14814/phy2.12907 URL |
[12] | Longobardi L, Granero-Moltó F, O’Rear L, et al. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells[J]. Journal Growth Factors, 174(2):289-297. |
[13] |
Khosravi MJ, Diamandi A, Mistry J, et al. Acid-labile subunit of human insulin-like growth factor-binding protein complex:measurement, molecular, and clinical evaluation[J]. J Clin Endocr Metab, 1997, 82(12):3944-3951.
pmid: 9398693 |
[14] |
Mohan S, Baylink DJ. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms[J]. Journal of Endocrinology, 2002, 175(1):19-31.
pmid: 12379487 |
[15] |
Forsberg EA, Botusan IR, Wang J, et al. Carnosine decreases IGFBP1 production in db/db mice through suppression of HIF-1[J]. Journal of Endocrinology, 2015, 225(3):159-167.
doi: 10.1530/JOE-14-0571 URL |
[16] |
Liu Y, Li F, et al. Dietary protein intake affects expression of genes for lipid metabolism in porcine skeletal muscle in a genotype-dependent manner[J]. British J Nutr, 2015, 113(7):1069-1077.
doi: 10.1017/S0007114514004310 URL |
[17] | Wang DF, Zhou LL, Zhou HL, et al. Effects of nutritional level of concentrate-based diets on meat quality and expression levels of genes related to meat quality in Hainan black goats[J]. Jounal of Animal Science, 2015, 86(2):166-173. |
[18] |
Uyeda K, Repa JJ. Carbohydrate response element binding protein, ChREBP, atranscription factor coupling hepatic glucose utilization and lipid synjournal[J]. Cell Metab, 2006, 4(2):107-110.
doi: 10.1016/j.cmet.2006.06.008 URL |
[19] | Denechaud PD, Bossard P, Lobaccaro JM, et al. ChREBP, but not LXRs, is required for the induction of glucose-regulated genes in mouse liver[J]. J Clin Inves, 2008, 118(3):956-964. |
[20] |
Giby VG, Ajith TA. Role of adipokines and peroxisome proliferator-activated receptors in nonalcoholic fatty liver disease[J]. World Journal of Hepatology, 2014, 6(8):570-579.
doi: 10.4254/wjh.v6.i8.570 URL |
[21] |
Feige JN, Gelman L, Michalik L, et al. From molecular action to physiological outputs:peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions[J]. Prog Lipid Res, 2006, 45(2):120-159.
doi: 10.1016/j.plipres.2005.12.002 URL |
[22] |
Zhou S, Xu H, Tang Q, et al. Dipyridamole enhances the cytotoxicities of trametinib against colon cancer cells through combined targeting of HMGCS1 and MEK pathway[J]. Molecular Cancer Therapeutics, 2020, 19(1):135-146.
doi: 10.1158/1535-7163.MCT-19-0413 URL |
[23] | Martin C, Zhang Y. The diverse functions of histone lysine methylation[J]. Nat Rev Molec Cell Biol, 2005, 6(11):838-849. |
[24] |
Jiang W, Wang JZ, Zhang Y. Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway[J]. Cell Research, 2013, 23(1):122-130.
doi: 10.1038/cr.2012.119 pmid: 22907667 |
[1] | 林红妍, 郭晓蕊, 刘迪, 李慧, 陆海. 转录组分析转录因子AtbHLH68调控细胞壁发育的分子机制[J]. 生物技术通报, 2023, 39(9): 105-116. |
[2] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 赵金玲, 安磊, 任晓亮. 单细胞转录组测序技术及其在秀丽隐杆线虫中的应用[J]. 生物技术通报, 2023, 39(6): 158-170. |
[5] | 孔德真, 段震宇, 王刚, 张鑫, 席琳乔. 盐、碱胁迫下高丹草苗期生理特征及转录组学分析[J]. 生物技术通报, 2023, 39(6): 199-207. |
[6] | 刘辉, 卢扬, 叶夕苗, 周帅, 李俊, 唐健波, 陈恩发. 外源硫诱导苦荞镉胁迫响应的比较转录组学分析[J]. 生物技术通报, 2023, 39(5): 177-191. |
[7] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[8] | 扈丽丽, 林柏荣, 王宏洪, 陈建松, 廖金铃, 卓侃. 最短尾短体线虫转录组及潜在效应蛋白分析[J]. 生物技术通报, 2023, 39(3): 254-266. |
[9] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[10] | 徐俊, 叶雨晴, 牛雅静, 黄河, 张蒙蒙. 菊花根状茎发育的转录组分析[J]. 生物技术通报, 2023, 39(10): 231-245. |
[11] | 罗皓天, 王龙, 王禹茜, 王月, 李佳祯, 杨梦珂, 张杰, 邓欣, 王红艳. 青狗尾草RNAi途径相关基因的全基因组鉴定和表达分析[J]. 生物技术通报, 2023, 39(1): 175-186. |
[12] | 辛建攀, 李燕, 赵楚, 田如男. 镉胁迫下梭鱼草叶片转录组测序及苯丙烷代谢途径相关基因挖掘[J]. 生物技术通报, 2022, 38(6): 198-210. |
[13] | 许瑾, 李涛, 李楚琳, 朱顺妮, 王忠铭, 向文洲. 温度对真眼点藻生长、总脂及二十碳五烯酸(EPA)合成的影响[J]. 生物技术通报, 2022, 38(6): 261-271. |
[14] | 熊和丽, 沙茜, 刘韶娜, 相德才, 张斌, 赵智勇. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3): 226-233. |
[15] | 张斌, 杨昕霞. 水稻响应盐胁迫关键转录因子的鉴定[J]. 生物技术通报, 2022, 38(3): 9-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||