生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 179-190.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0021
杜兵帅(), 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云()
收稿日期:
2024-01-05
出版日期:
2024-05-26
发布日期:
2024-04-19
通讯作者:
张凌云,女,教授,博士生导师,研究方向:经济林果实发育与品质调控;E-mail: lyzhang@bjfu.edu.cn作者简介:
杜兵帅,女,博士研究生,研究方向:油茶果实发育;E-mail: dubingshuai624@163.com
基金资助:
DU Bing-shuai(), ZOU Xin-hui, WANG Zi-hao, ZHANG Xin-yuan, CAO Yi-bo, ZHANG Ling-yun()
Received:
2024-01-05
Published:
2024-05-26
Online:
2024-04-19
摘要:
【目的】挖掘参与油茶糖代谢及逆境响应的糖外排转运子(sugars will eventually be exported transporters, SWEETs)。【方法】利用生物信息学方法分析油茶SWEETs家族的基因结构、蛋白基序、染色体定位、共线性关系、启动子区顺式作用元件及上游调控因子等,并利用RT-qPCR分析CoSWEETs在不同时期、不同组织及不同逆境胁迫下的基因表达情况。【结果】从油茶中鉴定得到14个CoSWEETs基因,不均匀分布于10条染色体上,不同成员间内含子-外显子数目存在差异。根据系统进化关系,14个CoSWEETs可分为 4个分支,均具有1-2个MtN3 保守结构域,同一分支具有相似的基因结构和基序。根据启动子顺式作用元件和上游转录因子预测的分析结果,CoSWEETs启动子中含有多个与生长发育、植物激素和应激相关的调节元件,其表达可能受到ERF、DOF、BBR-BPC、MYB等转录因子的调控。RT-qPCR分析表明大部分CoSWEETs成员在果实和根中高表达,在种子中的表达水平与发育时期相关,并根据低温、高盐和干旱等非生物胁迫下CoSWEETs的表达模式挖掘出CoSWEET1、CoSWEET2、CoSWEET17等响应油茶低温、干旱或高盐胁迫的基因。【结论】CoSWEET基因的表达受到多种激素及转录因子调控,并在油茶种子发育与逆境胁迫响应中发挥重要作用。
杜兵帅, 邹昕蕙, 王子豪, 张馨元, 曹一博, 张凌云. 油茶SWEET基因家族的全基因组鉴定及表达分析[J]. 生物技术通报, 2024, 40(5): 179-190.
DU Bing-shuai, ZOU Xin-hui, WANG Zi-hao, ZHANG Xin-yuan, CAO Yi-bo, ZHANG Ling-yun. Genome-wide Identification and Expression Analysis of the SWEET Gene Family in Camellia oleifera[J]. Biotechnology Bulletin, 2024, 40(5): 179-190.
基因名称Gene | 上游引物Forward primer sequence(5'-3') | 下游引物Reverse primer sequence(5'-3') |
---|---|---|
CoSWEET1a | GGTGAAGCCAAGAAACCTCCT | CTACTTGCTCGATCGCTTCTCT |
CoSWEET1b | TTGGAGGAAGAGAAGCTATCTG | ATGATTTCTTGACATGCGATTGAG |
CoSWEET2a | GCAGAGAACGCGAAAAAGGT | ATATCCAACGAAGATCTGTCGATT |
CoSWEET2b | ATGGTTTCTTTGGCTTTGTCCC | AGATATGAGTGGCGTGCCGT |
CoSWEET5 | CACCAGTCCCGACGTTCTTT | GGACGAAGGGAAGGCCATAG |
CoSWEET7 | CCAAGCTCCGGTCACTCATT | ATTAGCACAGGAAGCCAGGG |
CoSWEET9a | AGGTTCTACCAGAAGTCAAGCTG | TGGATTCGCTCGGTTTGATA |
CoSWEET9b | AAGAGCGTGGAGTACATGCC | GCAAATCCCGAGAGACGACA |
CoSWEET10 | TGGAGGAAGAGAAGCTATCTGAAT | TGAGGCATGACTGGAATGATTTCT |
CoSWEET15 | TCACCACCCACTGGTGTTTAC | ACATCCAAAGCATGGCACTG |
CoSWEET16a | TTCACCACCCACTGGTGTTT | GGCTGTGTGGTTCTTAGCCT |
CoSWEET16b | AGACTGCAACACTAGCTGGG | TCCTCAACAGAGGACACTGC |
CoSWEET17a | ATGTTGGGTTTCTTGGGGCA | GACAGCTAGAGGTGCTGCAT |
CoSWEET17b | GCAAGGCCTCGATGACCAC | TTTGTCGATGCTGTATTGCCG |
CoGAPDH | GGTGCCAAGAAGGTGGTAATA | GTTGTGCAGCTTGCATTAGAG |
CoActin | AAACTACGGTTGCGGATAGAG | CTCCGGTGCATCCTTCATAAT |
表1 本研究所用RT-qPCR 引物
Table 1 RT-qPCR primers used in this study
基因名称Gene | 上游引物Forward primer sequence(5'-3') | 下游引物Reverse primer sequence(5'-3') |
---|---|---|
CoSWEET1a | GGTGAAGCCAAGAAACCTCCT | CTACTTGCTCGATCGCTTCTCT |
CoSWEET1b | TTGGAGGAAGAGAAGCTATCTG | ATGATTTCTTGACATGCGATTGAG |
CoSWEET2a | GCAGAGAACGCGAAAAAGGT | ATATCCAACGAAGATCTGTCGATT |
CoSWEET2b | ATGGTTTCTTTGGCTTTGTCCC | AGATATGAGTGGCGTGCCGT |
CoSWEET5 | CACCAGTCCCGACGTTCTTT | GGACGAAGGGAAGGCCATAG |
CoSWEET7 | CCAAGCTCCGGTCACTCATT | ATTAGCACAGGAAGCCAGGG |
CoSWEET9a | AGGTTCTACCAGAAGTCAAGCTG | TGGATTCGCTCGGTTTGATA |
CoSWEET9b | AAGAGCGTGGAGTACATGCC | GCAAATCCCGAGAGACGACA |
CoSWEET10 | TGGAGGAAGAGAAGCTATCTGAAT | TGAGGCATGACTGGAATGATTTCT |
CoSWEET15 | TCACCACCCACTGGTGTTTAC | ACATCCAAAGCATGGCACTG |
CoSWEET16a | TTCACCACCCACTGGTGTTT | GGCTGTGTGGTTCTTAGCCT |
CoSWEET16b | AGACTGCAACACTAGCTGGG | TCCTCAACAGAGGACACTGC |
CoSWEET17a | ATGTTGGGTTTCTTGGGGCA | GACAGCTAGAGGTGCTGCAT |
CoSWEET17b | GCAAGGCCTCGATGACCAC | TTTGTCGATGCTGTATTGCCG |
CoGAPDH | GGTGCCAAGAAGGTGGTAATA | GTTGTGCAGCTTGCATTAGAG |
CoActin | AAACTACGGTTGCGGATAGAG | CTCCGGTGCATCCTTCATAAT |
Name | Gene ID | Chrom | CDS size | Protein length/aa | TMHs | Molecular weight(Average)/Da | pI | Instability index | GRAVY |
---|---|---|---|---|---|---|---|---|---|
CoSWEET1a | KAI8013233.1 | 4 | 756 | 251 | 7 | 27681.96 | 9.64 | 36.09 | 0.534 |
CoSWEET1b | KAI8003830.1 | 9 | 726 | 241 | 7 | 26377.37 | 9.71 | 36.9 | 0.671 |
CoSWEET2a | KAI8001534.1 | 8 | 708 | 235 | 7 | 25982.12 | 8.69 | 40.43 | 0.944 |
CoSWEET2b | KAI8008303.1 | 7 | 708 | 235 | 7 | 25933.89 | 9.39 | 39.6 | 0.888 |
CoSWEET5 | KAI8018837.1 | 2 | 723 | 240 | 7 | 27247.42 | 6.72 | 32.52 | 0.702 |
CoSWEET7 | KAI7995081.1 | 12 | 771 | 256 | 7 | 27737.2 | 9.26 | 40.41 | 0.668 |
CoSWEET9a | KAI7982657.1 | 11 | 828 | 275 | 7 | 30777.62 | 8.71 | 31.73 | 0.638 |
CoSWEET9b | KAI7982326.1 | 11 | 831 | 276 | 6 | 31463.67 | 9.37 | 27.9 | 0.769 |
CoSWEET10 | KAI8016974.1 | 2 | 984 | 327 | 7 | 36875.13 | 9.01 | 42.64 | 0.606 |
CoSWEET15 | KAI8023305.1 | 6 | 894 | 297 | 7 | 33239.44 | 6.19 | 36.79 | 0.638 |
CoSWEET16a | KAI8028642.1 | 3 | 750 | 249 | 7 | 27594.03 | 4.98 | 52.73 | 0.492 |
CoSWEET16b | KAI7980775.1 | 1 | 789 | 262 | 3 | 28591.53 | 4.75 | 51.82 | 0.012 |
CoSWEET17a | KAI8028641.1 | 3 | 930 | 309 | 7 | 33939.77 | 8.41 | 38.05 | 0.342 |
CoSWEET17b | KAI7980777.1 | 1 | 909 | 302 | 7 | 33108.94 | 9.27 | 35.38 | 0.429 |
表2 油茶CoSWEETs家族的理化特征分析
Table 2 Physical and chemical characteristics analysis of CoSWEETs family in C. oleifera
Name | Gene ID | Chrom | CDS size | Protein length/aa | TMHs | Molecular weight(Average)/Da | pI | Instability index | GRAVY |
---|---|---|---|---|---|---|---|---|---|
CoSWEET1a | KAI8013233.1 | 4 | 756 | 251 | 7 | 27681.96 | 9.64 | 36.09 | 0.534 |
CoSWEET1b | KAI8003830.1 | 9 | 726 | 241 | 7 | 26377.37 | 9.71 | 36.9 | 0.671 |
CoSWEET2a | KAI8001534.1 | 8 | 708 | 235 | 7 | 25982.12 | 8.69 | 40.43 | 0.944 |
CoSWEET2b | KAI8008303.1 | 7 | 708 | 235 | 7 | 25933.89 | 9.39 | 39.6 | 0.888 |
CoSWEET5 | KAI8018837.1 | 2 | 723 | 240 | 7 | 27247.42 | 6.72 | 32.52 | 0.702 |
CoSWEET7 | KAI7995081.1 | 12 | 771 | 256 | 7 | 27737.2 | 9.26 | 40.41 | 0.668 |
CoSWEET9a | KAI7982657.1 | 11 | 828 | 275 | 7 | 30777.62 | 8.71 | 31.73 | 0.638 |
CoSWEET9b | KAI7982326.1 | 11 | 831 | 276 | 6 | 31463.67 | 9.37 | 27.9 | 0.769 |
CoSWEET10 | KAI8016974.1 | 2 | 984 | 327 | 7 | 36875.13 | 9.01 | 42.64 | 0.606 |
CoSWEET15 | KAI8023305.1 | 6 | 894 | 297 | 7 | 33239.44 | 6.19 | 36.79 | 0.638 |
CoSWEET16a | KAI8028642.1 | 3 | 750 | 249 | 7 | 27594.03 | 4.98 | 52.73 | 0.492 |
CoSWEET16b | KAI7980775.1 | 1 | 789 | 262 | 3 | 28591.53 | 4.75 | 51.82 | 0.012 |
CoSWEET17a | KAI8028641.1 | 3 | 930 | 309 | 7 | 33939.77 | 8.41 | 38.05 | 0.342 |
CoSWEET17b | KAI7980777.1 | 1 | 909 | 302 | 7 | 33108.94 | 9.27 | 35.38 | 0.429 |
图1 不同物种间(拟南芥、水稻、茶树和油茶)SWEETs系统发育树
Fig. 1 Phylogenetic analysis of the SWEET proteins from four plant species(Arabidopsis thaliana, Oryza sati-va, Camellia sinensis and C. oleifera)
图2 油茶CoSWEETs家族基序,保守结构域及基因结构分析 A:CoSWEET基因家族保守基序分析;B:CoSWEET基因家族保守结构域分析;C:CoSWEET基因家族基因结构分析;D:CoSWEET基因家族保守基序的序列 Logo
Fig. 2 Conserved motifs and exon-intron structure analysis of the CoSWEETs family in C. oleifera A: Conservative domain of CoSWEET gene family; B: conserved domain analysis of CoSWEET gene family; C: gene structure map of CoSWEET gene family; D: Logo of conserved motif of CoSWEET gene family
图4 油茶CoSWEET基因家族启动子区的顺式作用元件分析和上游转录因子预测 A:CoSWEET基因家族启动子区的顺式作用元件分析;B-C:CoSWEET基因家族的上游转录因子预测
Fig. 4 Cis-element analysis and upstream transcription factor prediction of CoSWEET gene family in C. oleifera A: Cis-acting elements analysis in the promotors of CoSWEET gene family. B-C: Prediction about the upstream transcription factors of CoSWEET gene family
图5 油茶种子中蔗糖含量变化及CoSWEETs表达特性分析 A:不同发育时期的油茶种子中蔗糖含量变化;B:不同发育时期的油茶种子中CoSWEETs的表达模式分析
Fig. 5 Content changes of sucrose in seeds and expression analysis of CoSWEETs genes in C. oleifera A: Content changes of sucrose in seeds at different stages. B: The expression profiles of CoSWEETs in seeds at differential stages
图6 油茶CoSWEETs基因家族的表达特性分析 A:CoSWEETs在油茶不同组织中的表达模式分析;B:CoSWEETs在不同非生物胁迫下的表达模式分析
Fig. 6 Expression analysis of CoSWEETs gene family in C. oleifera A: Expression profiles of CoSWEETs in different C. oleifera tissues. B: Expression profiles of CoSWEETs under various abiotic stress
[1] | Ruan YL. Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annu Rev Plant Biol, 2014, 65: 33-67. |
[2] | Yoon J, Cho LH, Tun W, et al. Sucrose signaling in higher plants[J]. Plant Sci, 2021, 302: 110703. |
[3] |
Ayre BG. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning[J]. Mol Plant, 2011, 4(3): 377-394.
doi: 10.1093/mp/ssr014 pmid: 21502663 |
[4] |
Doidy J, Grace E, Kühn C, et al. Sugar transporters in plants and in their interactions with fungi[J]. Trends Plant Sci, 2012, 17(7): 413-422.
doi: 10.1016/j.tplants.2012.03.009 pmid: 22513109 |
[5] | Chen LQ, Qu XQ, Hou BH, et al. Sucrose efflux mediated by SWEET proteins as a key step for phloem transport[J]. Science, 2012, 335(6065): 207-211. |
[6] | Tao YY, Cheung LS, Li S, et al. Structure of a eukaryotic SWEET transporter in a homotrimeric complex[J]. Nature, 2015, 527(7577): 259-263. |
[7] | Xuan YH, Hu YB, Chen LQ, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J]. Proc Natl Acad Sci USA, 2013, 110(39): E3685-E3694. |
[8] | Chen LQ, Hou BH, Lalonde S, et al. Sugar transporters for intercellular exchange and nutrition of pathogens[J]. Nature, 2010, 468(7323): 527-532. |
[9] |
Yuan M, Wang SP. Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms[J]. Mol Plant, 2013, 6(3): 665-674.
doi: 10.1093/mp/sst035 pmid: 23430047 |
[10] |
Gao Y, Wang ZY, Kumar V, et al. Genome-wide identification of the SWEET gene family in wheat[J]. Gene, 2018, 642: 284-292.
doi: S0378-1119(17)31009-0 pmid: 29155326 |
[11] | Patil G, Valliyodan B, Deshmukh R, et al. Soybean(Glycine max)SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J]. BMC Genomics, 2015, 16(1): 520. |
[12] | Wei XY, Liu FL, Chen C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J]. Front Plant Sci, 2014, 5: 569. |
[13] | Jiang L, Song C, Zhu X, et al. SWEET transporters and the potential functions of these sequences in tea(Camellia sinensis)[J]. Front Genet, 2021, 12: 655843. |
[14] | Eom JS, Chen LQ, Sosso D, et al. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Curr Opin Plant Biol, 2015, 25: 53-62. |
[15] |
Wang SD, Yokosho K, Guo RZ, et al. The soybean sugar transporter GmSWEET15 mediates sucrose export from endosperm to early embryo[J]. Plant Physiol, 2019, 180(4): 2133-2141.
doi: 10.1104/pp.19.00641 pmid: 31221732 |
[16] | Shen S, Ma S, Chen XM, et al. A transcriptional landscape underlying sugar import for grain set in maize[J]. Plant J, 2022, 110(1): 228-242. |
[17] | Guan YF, Huang XY, Zhu J, et al. RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis[J]. Plant Physiol, 2008, 147(2): 852-863. |
[18] | 徐磊, 王伟伟, 苏世超, 等. 小麦糖转运蛋白基因TaSWEET6的克隆与表达分析[J]. 麦类作物学报, 2016, 36(11): 1411-1418. |
Xu L, Wang WW, Su SC, et al. Cloning and expression analysis of a sugar transporter protein gene TaSWEET6 in wheat[J]. J Triticeae Crops, 2016, 36(11): 1411-1418. | |
[19] | 张璐, 李明, 叶广继, 等. 马铃薯糖转运蛋白基因的克隆及表达分析[J]. 西北植物学报, 2019, 39(9): 1528-1533. |
Zhang L, Li M, Ye GJ, et al. Cloning and expression analysis of a sugar transporter protein gene in potato[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(9): 1528-1533. | |
[20] | 马来. 水稻蔗糖转运蛋白OsSWEET11和OsSWEET14功能的研究[D]. 南京: 南京农业大学, 2018. |
Ma L. Functional analysis of sucrose transporter genes OsSWEET11 and OsSWEET14 in rice[D]. Nanjing: Nanjing Agricultural University, 2018. | |
[21] | Durand M, Porcheron B, Hennion N, et al. Water deficit enhances C export to the roots in Arabidopsis thaliana plants with contribution of sucrose transporters in both shoot and roots[J]. Plant Physiol, 2016, 170(3): 1460-1479. |
[22] |
Valifard M, Le Hir R, Müller J, et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J]. Plant Physiol, 2021, 187(4): 2716-2730.
doi: 10.1093/plphys/kiab436 pmid: 34597404 |
[23] |
叶洲辰, 吴友根, 于靖, 等. 不同产地油茶籽油提取物的抗氧化活性比较分析及其营养评价[J]. 生物技术通报, 2019, 35(10): 80-88.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0433 |
Ye ZC, Wu YG, Yu J, et al. Comparative analysis of antioxidant activities of Camellia oleifera oil extracts from different areas and their nutritional assessments[J]. Biotechnol Bull, 2019, 35(10): 80-88. | |
[24] | Zhang FH, Li Z, Zhou JQ, et al. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera[J]. BMC Plant Biol, 2021, 21(1): 348. |
[25] | Song QL, Gong WF, Yu XR, et al. Transcriptome and anatomical comparisons reveal the effects of methyl jasmonate on the seed development of Camellia oleifera[J]. J Agric Food Chem, 2023, 71(17): 6747-6762. |
[26] | He ZL, Liu CX, Zhang Z, et al. Integration of mRNA and miRNA analysis reveals the differentially regulatory network in two different Camellia oleifera cultivars under drought stress[J]. Front Plant Sci, 2022, 13: 1001357. |
[27] | Wu YT, Wu PZ, Xu SM, et al. Genome-wide identification, expression patterns and sugar transport of the physic nut SWEET gene family and a functional analysis of JcSWEET16 in Arabidopsis[J]. Int J Mol Sci, 2022, 23(10): 5391. |
[28] | Hu Z, Tang ZJ, Zhang YM, et al. Rice SUT and SWEET transporters[J]. Int J Mol Sci, 2021, 22(20): 11198. |
[29] | Zeng Z, Lyu T, Lyu YM. LoSWEET14, a sugar transporter in lily, is regulated by transcription factor LoABF2 to participate in the ABA signaling pathway and enhance tolerance to multiple abiotic stresses in tobacco[J]. Int J Mol Sci, 2022, 23(23): 15093. |
[30] | Yu MX, Liu JL, Du BS, et al. NAC transcription factor PwNAC11 activates ERD1 by interaction with ABF3 and DREB2A to enhance drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2021, 22(13): 6952. |
[31] | Dai ZR, Yan PY, He SZ, et al. Genome-wide identification and expression analysis of SWEET family genes in sweet potato and its two diploid relatives[J]. Int J Mol Sci, 2022, 23(24): 15848. |
[32] |
孙全喜, 苑翠玲, 牟艺菲, 等. 花生SWEET基因全基因组鉴定及表达分析[J]. 作物学报, 2023, 49(4): 938-954.
doi: 10.3724/SP.J.1006.2023.24066 |
Sun QX, Yuan CL, Mou YF, et al. Genome-wide identification and expression analysis of SWEET genes from peanut genomes[J]. Acta Agron Sin, 2023, 49(4): 938-954. | |
[33] |
Yang J, Luo DP, Yang B, et al. SWEET11 and 15 as key players in seed filling in rice[J]. New Phytol, 2018, 218(2): 604-615.
doi: 10.1111/nph.15004 pmid: 29393510 |
[34] |
Saddhe AA, Manuka R, Penna S. Plant sugars: Homeostasis and transport under abiotic stress in plants[J]. Physiol Plant, 2021, 171(4): 739-755.
doi: 10.1111/ppl.13283 pmid: 33215734 |
[35] | Wu YT, Wang SS, Du WH, et al. Sugar transporter ZmSWEET1b is responsible for assimilate allocation and salt stress response in maize[J]. Funct Integr Genomics, 2023, 23(2): 137. |
[36] |
路静, 马齐军, 康慧, 等. 苹果糖转运蛋白基因MdSWEET1在番茄中异源表达提高其耐盐性[J]. 园艺学报, 2019, 46(3): 433-443.
doi: 10.16420/j.issn.0513-353x.2018-0744 |
Lu J, Ma QJ, Kang H, et al. Ectopic expressing MdSWEET1 in tomato enhanced salt tolerance[J]. Acta Hortic Sin, 2019, 46(3): 433-443. | |
[37] | Ye ZH, Du BS, Zhou J, et al. Camellia oleifera CoSWEET10 is crucial for seed development and drought resistance by mediating su-gar transport in transgenic Arabidopsis[J]. Plants, 2023, 12(15): 2818. |
[38] | 胡晓波. 柑橘SWEET11d对果实蔗糖积累的转录调控机制研究[D]. 杭州: 浙江大学, 2022. |
Hu XB. Transcriptional regulation mechanism of citrus SWEET11d on fruit sucrose accumulation[D]. Hangzhou: Zhejiang University, 2022. | |
[39] | Wu YF, Lee SK, Yoo Y, et al. Rice transcription factor OsDOF11 modulates sugar transport by promoting expression of sucrose transporter and SWEET genes[J]. Mol Plant, 2018, 11(6): 833-845. |
[40] | Sun WJ, Gao ZY, Wang J, et al. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate transportation into expanding fibers[J]. New Phytol, 2019, 222(2): 864-881. |
[1] | 李景艳, 周家婧, 袁媛, 苏晓艺, 乔文慧, 薛岩磊, 李国婧, 王瑞刚. 拟南芥AtiPGAM2基因参与非生物胁迫的响应[J]. 生物技术通报, 2024, 40(5): 215-224. |
[2] | 郭慧妍, 董雪, 安梦楠, 夏子豪, 吴元华. 泛素化修饰关键酶在植物抗逆反应中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 1-11. |
[3] | 彭凤, 余海霞, 张坤, 刘颖颖, 谭桂玉. 植物油体钙蛋白调控脂滴功能的研究进展[J]. 生物技术通报, 2024, 40(4): 33-39. |
[4] | 江林琪, 赵佳莹, 郑飞雄, 姚馨怡, 李效贤, 俞振明. 铁皮石斛14-3-3基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(3): 229-241. |
[5] | 周宏丹, 罗晓萍, 涂米雪, 李忠光. 植物褪黑素:植物应答非生物胁迫的新兴信号分子[J]. 生物技术通报, 2024, 40(3): 41-51. |
[6] | 吴翠翠, 肖水平. 陆地棉HD-Zip家族全基因组鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(2): 130-145. |
[7] | 辛奇, 李压凡, 尹铮, 张晓丹, 陈霆, 刘晓华. 甘蔗CBL-CIPK基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(2): 197-211. |
[8] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[9] | 张怡, 张心如, 张金珂, 胡利宗, 上官欣欣, 郑晓红, 胡娟娟, 张聪聪, 穆桂清, 李成伟. 小麦镉胁迫响应基因TaMYB1的功能分析[J]. 生物技术通报, 2024, 40(1): 194-206. |
[10] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[11] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[12] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[13] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[14] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[15] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||