生物技术通报 ›› 2024, Vol. 40 ›› Issue (8): 264-274.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0230
车建美1(), 赖恭梯2, 李思雨2, 郭奥琳2, 陈冰星1, 陈杏1, 刘波1(), 赖呈纯2()
收稿日期:
2024-03-08
出版日期:
2024-08-26
发布日期:
2024-09-05
通讯作者:
刘波,博士,研究员,研究方向:农业微生物;E-mail: fzliubo@163.com;作者简介:
车建美,博士,研究员,研究方向:农业微生物;E-mail: chejm2002@163.com
基金资助:
CHE Jian-mei1(), LAI Gong-ti2, LI Si-yu2, GUO Ao-lin2, CHEN Bing-xing1, CHEN Xing1, LIU Bo1(), LAI Cheng-chun2()
Received:
2024-03-08
Published:
2024-08-26
Online:
2024-09-05
摘要:
【目的】葡萄是我国栽培广泛的五大果树品种之一,长期过量施用化肥,破坏微生物生态,从而影响葡萄产量和品质。探究不同来源菌株的复合微生物菌剂对改善葡萄果实品质的作用。【方法】采用复合微生物菌剂[短短芽胞杆菌(Brevibacillus brevis)FJAT-0809-GLX、贝莱斯芽胞杆菌(Bacillus velezensis)FJAT-55034及短短芽胞杆菌(B. brevis)FJAT-10623]灌根,分析复合微生物菌剂对葡萄生长和果实品质及根际土壤酶活性、可培养芽胞杆菌多样性等的影响。【结果】复合微生物菌剂能够促进葡萄叶片生长,提高叶片的叶绿素a和类胡萝卜素含量及POD和PPO活性。处理组葡萄幼果的叶绿素b含量、SOD和PPO活性分别比对照组提高了100%、11.77%和66.67%。施用复合微生物菌剂能够促进葡萄提早成熟及果实转色,提升果实品质,其中,单果重比对照高出29.06%,可溶性固形物和可溶性蛋白分别比对照组提高了7.31%和94.74%,且处理组成熟果实的PPO酶活性显著高于对照组。此外,复合微生物菌剂能够显著提高土壤淀粉酶、过氧化氢酶、纤维素酶、蔗糖酶活性及芽胞杆菌的种类和数量。相关性分析表明,辣椒芽胞杆菌(Bacillus zanthoxyli)和假蕈状芽胞杆菌(Bacillus pseudomycoides)可促进葡萄叶片生长及果实品质提升。【结论】复合微生物菌剂具有改良土壤、促进葡萄生长和提升果实品质的作用。
车建美, 赖恭梯, 李思雨, 郭奥琳, 陈冰星, 陈杏, 刘波, 赖呈纯. 复合微生物菌剂对葡萄生长、品质及根际土壤环境的影响[J]. 生物技术通报, 2024, 40(8): 264-274.
CHE Jian-mei, LAI Gong-ti, LI Si-yu, GUO Ao-lin, CHEN Bing-xing, CHEN Xing, LIU Bo, LAI Cheng-chun. Effects of Compound Microbial Agent on the Growth, Quality and Rhizosphere Environment of Grape[J]. Biotechnology Bulletin, 2024, 40(8): 264-274.
图1 复合微生物菌剂对葡萄叶片生理指标及抗氧化酶活性的影响 不同小写字母代表不同处理间差异达5%显著水平。下同
Fig. 1 Effects of compound microbial agent on the physiological indexes and antioxidant enzyme activities of grape leaves Different letters indicate significant difference at 0.05 probability level among different treatments for each year. The same below
图2 复合微生物菌剂对葡萄幼果生理指标及抗氧化酶活性的影响
Fig. 2 Effects of compound microbial agent on the physiological indexes and antioxidant enzyme activities of grape young fruits
处理 Treatment | 穗宽 Spike width/mm | 单穗重 Single panicle weight/g | 单果重 Single fruit weight/g | 果粒纵径 Longitudinal diameter/mm | 果粒横径 Transverse diameter/mm |
---|---|---|---|---|---|
对照组Control | 79.82±4.12b | 312.99±20.61b | 3.20±0.05b | 17.35±0.18b | 18.23±0.30b |
处理组Treatment | 105.33±4.76a | 375.14±30.65a | 4.13±0.14a | 18.86±0.23a | 19.40±0.24a |
表1 复合微生物菌剂对葡萄果实外观品质的影响
Table 1 Effects of compound microbial agent on grape external quality
处理 Treatment | 穗宽 Spike width/mm | 单穗重 Single panicle weight/g | 单果重 Single fruit weight/g | 果粒纵径 Longitudinal diameter/mm | 果粒横径 Transverse diameter/mm |
---|---|---|---|---|---|
对照组Control | 79.82±4.12b | 312.99±20.61b | 3.20±0.05b | 17.35±0.18b | 18.23±0.30b |
处理组Treatment | 105.33±4.76a | 375.14±30.65a | 4.13±0.14a | 18.86±0.23a | 19.40±0.24a |
处理 Treatments | 可溶性固形物 Soluble solid/% | 可溶性糖 Soluble sugar/% | 总糖Total sugar /(g·100 g-1) | 总酸Total acid /(g·kg-1) | 糖酸比Ratio of total sugar and total acid | 可溶性蛋白Soluble protein /(mg·g-1) | PPO酶活性PPO acitivity /(U·min-1·g-1) |
---|---|---|---|---|---|---|---|
对照组Control | 19.01±0.37b | 17.53±0.10b | 17.67±0.08b | 5.42±0.07a | 32.58±0.50b | 0.19±0.02b | 6.00±0.16b |
处理组Treatment | 20.40±0.39a | 18.34±0.05a | 18.55±0.03a | 5.33±0.06a | 34.78±0.43a | 0.37±0.06a | 33.33±0.11a |
表2 复合微生物菌剂对葡萄果实内在品质的影响
Table 2 Effects of compound microbial agent on grape internal quality
处理 Treatments | 可溶性固形物 Soluble solid/% | 可溶性糖 Soluble sugar/% | 总糖Total sugar /(g·100 g-1) | 总酸Total acid /(g·kg-1) | 糖酸比Ratio of total sugar and total acid | 可溶性蛋白Soluble protein /(mg·g-1) | PPO酶活性PPO acitivity /(U·min-1·g-1) |
---|---|---|---|---|---|---|---|
对照组Control | 19.01±0.37b | 17.53±0.10b | 17.67±0.08b | 5.42±0.07a | 32.58±0.50b | 0.19±0.02b | 6.00±0.16b |
处理组Treatment | 20.40±0.39a | 18.34±0.05a | 18.55±0.03a | 5.33±0.06a | 34.78±0.43a | 0.37±0.06a | 33.33±0.11a |
处理Treatment | 菌株编号Strain No. | 鉴定种类Identified species | 16S rRNA相似性16S rRNA similarity /% | 含量Content(×103 CFU·g-1) |
---|---|---|---|---|
对照组Control | CK1 | Bacillus cereus | 99.65 | 1.33 |
CK2 | Bacillus aryabhattai | 99.24 | 2.67 | |
CK4 | Paenibacillus favisporus | 99.65 | 3.33 | |
CK6 | Bacillus altitudinis | 99.86 | 2 | |
CK7 | Bacillus zanthoxyli | 99.93 | 8 | |
CK13 | Paenibacillus lautus | 99.04 | 0.67 | |
CK22 | Paenibacillus cineris | 99.66 | 2 | |
CK26 | Paenibacillus illinoisensis | 98.62 | 0.67 | |
CK28 | Neobacillus drentensis | 99.57 | 0.67 | |
CK34 | Cytobacillus oceanisediminis | 99.79 | 0.67 | |
CK37 | Oceanobacillus sojae | 99.80 | 0.67 | |
CK39 | Paenibacillus pinisoli | 98.90 | 0.67 | |
CK42 | Bacillus proteolyticus | 99.79 | 0.67 | |
CK52 | Paenibacillus cookii | 99.03 | 0.67 | |
CK55 | Neobacillus bataviensis | 99.50 | 0.67 | |
处理组 Treatment | T1 | Bacillus cereus | 99.72 | 2 |
T2 | Bacillus zanthoxyli | 99.93 | 19.33 | |
T7 | Terribacillus saccharophilus | 99.38 | 1.33 | |
T11 | Bacillus wiedmannii | 99.65 | 0.67 | |
T16 | Oceanobacillus sojae | 99.72 | 0.67 | |
T18 | Bacillus tequilensis | 100 | 1.33 | |
T22 | Bacillus safensis | 99.79 | 0.67 | |
T23 | Bacillus lentus | 99.79 | 0.67 | |
T26 | Neobacillus cucumis | 98.68 | 1.33 | |
T30 | Bacillus pseudomycoides | 99.45 | 4 | |
T37 | Bacillus albus | 99.79 | 1.33 | |
T40 | Bacillus dafuensis | 99.59 | 0.67 | |
T41 | Mesobacillus subterraneus | 99.23 | 0.67 | |
T47 | Bacillus endophyticus | 99.44 | 0.67 | |
T48 | Bacillus megaterium | 99.89 | 2.67 | |
T50 | Bacillus pumilus | 99.72 | 0.67 | |
T51 | Bacillus proteolyticus | 99.79 | 0.67 | |
T54 | Bacillus haikouensis | 97.82 | 0.67 | |
T58 | Bacillus aryabhattai | 99.93 | 2.67 | |
T59 | Bacillus vietnamensis | 98.95 | 0.67 | |
T69 | Peribacillus frigoritoleran | 99.66 | 2 | |
T78 | Lysinibacillus macroide | 99.72 | 0.67 | |
T82 | Psychrobacillus vulpis | 98.90 | 0.67 | |
T83 | Lysinibacillus agricola | 99.24 | 1.33 | |
T84 | Cytobacillus oceanisediminis | 99.24 | 1.33 | |
T103 | Bacillus australimaris | 99.79 | 0.67 | |
T105 | Bacillus rhizoplanae | 99.44 | 1.33 | |
T127 | Bacillus stercoris | 99.52 | 0.67 |
表3 不同处理葡萄根际土壤芽胞杆菌种类分类与鉴定
Table 3 Isolation and identification of Bacillus-like species in grape rhizosphere soil under different treatments
处理Treatment | 菌株编号Strain No. | 鉴定种类Identified species | 16S rRNA相似性16S rRNA similarity /% | 含量Content(×103 CFU·g-1) |
---|---|---|---|---|
对照组Control | CK1 | Bacillus cereus | 99.65 | 1.33 |
CK2 | Bacillus aryabhattai | 99.24 | 2.67 | |
CK4 | Paenibacillus favisporus | 99.65 | 3.33 | |
CK6 | Bacillus altitudinis | 99.86 | 2 | |
CK7 | Bacillus zanthoxyli | 99.93 | 8 | |
CK13 | Paenibacillus lautus | 99.04 | 0.67 | |
CK22 | Paenibacillus cineris | 99.66 | 2 | |
CK26 | Paenibacillus illinoisensis | 98.62 | 0.67 | |
CK28 | Neobacillus drentensis | 99.57 | 0.67 | |
CK34 | Cytobacillus oceanisediminis | 99.79 | 0.67 | |
CK37 | Oceanobacillus sojae | 99.80 | 0.67 | |
CK39 | Paenibacillus pinisoli | 98.90 | 0.67 | |
CK42 | Bacillus proteolyticus | 99.79 | 0.67 | |
CK52 | Paenibacillus cookii | 99.03 | 0.67 | |
CK55 | Neobacillus bataviensis | 99.50 | 0.67 | |
处理组 Treatment | T1 | Bacillus cereus | 99.72 | 2 |
T2 | Bacillus zanthoxyli | 99.93 | 19.33 | |
T7 | Terribacillus saccharophilus | 99.38 | 1.33 | |
T11 | Bacillus wiedmannii | 99.65 | 0.67 | |
T16 | Oceanobacillus sojae | 99.72 | 0.67 | |
T18 | Bacillus tequilensis | 100 | 1.33 | |
T22 | Bacillus safensis | 99.79 | 0.67 | |
T23 | Bacillus lentus | 99.79 | 0.67 | |
T26 | Neobacillus cucumis | 98.68 | 1.33 | |
T30 | Bacillus pseudomycoides | 99.45 | 4 | |
T37 | Bacillus albus | 99.79 | 1.33 | |
T40 | Bacillus dafuensis | 99.59 | 0.67 | |
T41 | Mesobacillus subterraneus | 99.23 | 0.67 | |
T47 | Bacillus endophyticus | 99.44 | 0.67 | |
T48 | Bacillus megaterium | 99.89 | 2.67 | |
T50 | Bacillus pumilus | 99.72 | 0.67 | |
T51 | Bacillus proteolyticus | 99.79 | 0.67 | |
T54 | Bacillus haikouensis | 97.82 | 0.67 | |
T58 | Bacillus aryabhattai | 99.93 | 2.67 | |
T59 | Bacillus vietnamensis | 98.95 | 0.67 | |
T69 | Peribacillus frigoritoleran | 99.66 | 2 | |
T78 | Lysinibacillus macroide | 99.72 | 0.67 | |
T82 | Psychrobacillus vulpis | 98.90 | 0.67 | |
T83 | Lysinibacillus agricola | 99.24 | 1.33 | |
T84 | Cytobacillus oceanisediminis | 99.24 | 1.33 | |
T103 | Bacillus australimaris | 99.79 | 0.67 | |
T105 | Bacillus rhizoplanae | 99.44 | 1.33 | |
T127 | Bacillus stercoris | 99.52 | 0.67 |
图6 芽胞杆菌与叶片和果实生长指标相关性分析 A:芽胞杆菌与叶片生长指标的相关性;B:芽胞杆菌与果实生长指标的相关性。CA:叶绿素a;CB:叶绿素b;TD:果实横径;SW:单果粒重;TC:总酸;SS:可溶性固形物;BZ:辣椒芽胞杆菌;BP:假蕈状芽胞杆菌;BM:巨大芽胞杆菌;BA:阿氏芽胞杆菌
Fig. 6 Heatmap correlation analysis among Bacillus sp. growth index of leaves and fruits A: Correlation between Bacillus and leaf growth indexes; B: correlation between Bacillus and fruit growth indexes. CA: Chlorophyll a; CB: chlorophyll b; TD: transverse diameter; SW: single grain weight; TC: total acid; SS: soluble solids; BZ: B. zanthoxyli; BP: B. pseudomycoides; BM: B. megaterium; BA: B. aryabhattai
[1] | 张富民, 赖呈纯, 黄贤贵, 等. 196份福建葡萄品种资源亲缘关系的ISSR分析[J]. 福建农业学报, 2018, 33(3): 263-268. |
Zhang FM, Lai CC, Huang XG, et al. Genetic relationship among grape varieties in Fujian by ISSR markers[J]. Fujian J Agric Sci, 2018, 33(3): 263-268. | |
[2] | 陈国品, 李玮, 谢蜀豫, 等. 2种类型微生物肥对夏黑葡萄生长发育及果实品质的影响[J]. 西南农业学报, 2021, 34(1): 106-112. |
Chen GP, Li W, Xie SY, et al. Effects of two types of microbial fertilizers on summer black grape growth and fruit quality[J]. Southwest China J Agric Sci, 2021, 34(1): 106-112. | |
[3] | Vanina FF, Bello F, Fernanda RM, et al. Biocontrol of Penicillium digitatum by native Bacillus and Pseudomonas strains isolated from orange peel[J]. Biol Contr, 2023, 186: 105340. |
[4] | 王军, 陈云, 石磊, 等. 微生物菌剂在巨峰葡萄上的肥效试验[J]. 新疆农垦科技, 2020, 43(11): 35-38. |
Wang J, Chen Y, Shi L, et al. Fertilizer efficiency test of microbial agents on kyoho grape[J]. Xinjiang Farm Res Sci Technol, 2020, 43(11): 35-38. | |
[5] | Che JM, Lai CC, Lai GT, et al. Effects of a mixture of Brevibacillus brevis with other Bacillus sp. strains against gray mold and on enzyme activities of grape[J]. Agronomy, 2023, 13(7): 1724. |
[6] | Du CJ, Yang D, Ye YF, et al. Construction of a compound microbial agent for biocontrol against Fusarium wilt of banana[J]. Front Microbiol, 2022, 13: 1066807. |
[7] | Hu J, Wei Z, Friman VP, et al. Probiotic diversity enhances rhizosphere microbiome function and plant disease suppression[J]. mBio, 2016, 7(6): e01790-e01716. |
[8] | 夏木凤, 陈婷婷. 复合微生物菌剂对水稻生长及产量的影响[J]. 特种经济动植物, 2023, 26(9): 38-40. |
Xia MF, Chen TT. Effects of compound microbial agents on rice growth and yield[J]. Spec Econ Anim Plants, 2023, 26(9): 38-40. | |
[9] | 刘欣. 复合生防菌对苹果腐烂病防治的增效机制研究[D]. 呼和浩特: 内蒙古农业大学, 2022. |
Liu X. Study on synergistic mechanism of compound biocontrol bacteria against apple canker disease[D]. Hohhot: Inner Mongolia Agricultural University, 2022. | |
[10] |
萧利珠, 郑文秀, 陈铭炯, 等. 溶磷复合菌剂筛选及其对山核桃幼苗的生物学效应[J]. 核农学报, 2021, 35(9): 2165-2171.
doi: 10.11869/j.issn.100-8551.2021.09.2165 |
Xiao LZ, Zheng WX, Chen MJ, et al. Screening the phosphate-solublizing mixing microbial inoculums and their growth-promoting effects on Chinese walnut Carya cathayensis sarg. seedlings[J]. J Nucl Agric Sci, 2021, 35(9): 2165-2171. | |
[11] | Che JM, Liu B, Lin YZ, et al. Draft genome sequence of biocontrol bacterium Brevibacillus brevis strain FJAT-0809-GLX[J]. Genome Announc, 2013, 1(2): e0016013. |
[12] | Che JM, Liu B, Chen Z, et al. Identification of ethylparaben as the antimicrobial substance produced by Brevibacillus brevis FJAT-0809-GLX[J]. Microbiol Res, 2015, 172: 48-56. |
[13] | Che JM, Liu B, Liu GH, et al. Induced mutation breeding of Brevibacillus brevis FJAT-0809-GLX for improving ethylparaben production and its application in the biocontrol of Lasiodiplodia theobromae[J]. Postharvest Biol Technol, 2018, 146: 60-67. |
[14] | 车建美, 刘波, 刘国红, 等. 优化短短芽孢杆菌施用技术对番茄和辣椒幼苗生长的影响[J]. 中国蔬菜, 2018(4): 43-47. |
Che JM, Liu B, Liu GH, et al. Effect of optimized application technology on tomato and pepper seedling growth of Brevibacillus brevis FJAT-0809-GLX[J]. China Veg, 2018(4): 43-47. | |
[15] | 蔡庆生. 植物生理学实验[M]. 北京: 中国农业大学出版社, 2013. |
Cai QS. Plant physiology experiment[M]. Beijing: China Agricultural University Press, 2013. | |
[16] | 陈志成. 8个树种对干旱胁迫的生理响应及抗旱性评价[D]. 泰安: 山东农业大学, 2013. |
Chen ZC. Physiological response of eight tree species to drought stress and evaluation of drought resistance[D]. Tai'an: Shandong Agricultural University, 2013. | |
[17] | Al Azad S, Moazzem HK, Rahman SMM, et al. In ovo inoculation of duck embryos with different strains of Bacillus cereus to analyse their synergistic post-hatch anti-allergic potentialities[J]. Vet Med Sci, 2020, 6(4): 992-999. |
[18] | Chen L, Li KK, Shang JY, et al. Plant growth-promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil[J]. Biol Fertil Soils, 2021, 57(8): 1075-1088. |
[19] |
Gupta R, Kumari A, Sharma S, et al. Identification, characterization and optimization of phosphate solubilizing rhizobacteria(PSRB)from rice rhizosphere[J]. Saudi J Biol Sci, 2022, 29(1): 35-42.
doi: 10.1016/j.sjbs.2021.09.075 pmid: 35002393 |
[20] | 杨文娟, 余君, 杨春雷, 等. 烟草化感自毒物质降解复合菌剂的优化及应用效果评价[J]. 微生物学报, 2024, 64(4): 1044-1063. |
Yang WJ, Yu J, Yang CL, et al. Optimization and evaluation of a compound bacterial agent degrading autotoxins of tobacco[J]. Acta Microbiol Sin, 2024, 64(4): 1044-1063. | |
[21] | 陈悦, 张秀英, 张丹, 等. 微生物菌剂与大蒜油配施对银叶病苹果叶片生理特性及果实品质的影响[J]. 果树资源学报, 2024, 5(1): 1-7. |
Chen Y, Zhang XY, Zhang D, et al. Effects of microbial agents combined with garlic oil on the physiological characteristics and fruit quality of apple leaves with silver leaf disease[J]. J Fruit Resour, 2024, 5(1): 1-7. | |
[22] | 梁洪榜, 赵丽, 周云鹏, 等. 盐碱地应用根际促生菌对土壤改良、作物产量与品质的影响——基于Meta分析[J]. 土壤, 2022, 54(6): 1257-1264. |
Liang HB, Zhao L, Zhou YP, et al. Effects of rhizosphere growth-promoting bacteria on soil improvement, crop yield and quality in saline-alkali land—a meta-analysis[J]. Soils, 2022, 54(6): 1257-1264. | |
[23] | 张智, 景仕豪, 周楠, 等. 不同复合微生物菌剂及施用量对番茄生长和品质的影响[J]. 西北农林科技大学学报: 自然科学版, 2023, 51(9): 119-128, 137. |
Zhang Z, Jing SH, Zhou N, et al. Effects of different compound microbial inoculants and application rates on growth and fruit quality of tomato[J]. J Northwest A F Univ Nat Sci Ed, 2023, 51(9): 119-128, 137. | |
[24] | 保善存, 樊光辉, 李发毅. 解淀粉芽孢杆菌微生物菌剂对枸杞生长及土壤性状的影响[J]. 中国土壤与肥料, 2023(8): 112-120. |
Bao SC, Fan GH, Li FY. Effects of Bacillus amyloliquefaciens microbial agent on the growth and soil properties of Lycium barbarum L[J]. Soil Fertil Sci China, 2023(8): 112-120. | |
[25] | Najafi M, Esfahani MN, Vatandoost J, et al. Antioxidant enzymes activity associated with resistance to Phytophthora melonis-pumpkin blight[J]. Physiol Mol Plant Pathol, 2024, 129: 102192. |
[26] | 刘明, 王昕, 高涵, 等. 一株菜豆普通细菌性疫病拮抗细菌的分离鉴定及其生防效果[J]. 中国生物防治学报, 2024, 40(1): 157-166. |
Liu M, Wang X, Gao H, et al. Isolation, identification and control effect of antagonistic bacteria on common bacterial blight of common bean[J]. Chin J Biol Contr, 2024, 40(1): 157-166. | |
[27] | Luo M, Chen Y, Huang QR, et al. Trichoderma koningiopsis Tk905: an efficient biocontrol, induced resistance agent against banana Fusarium wilt disease and a potential plant-growth-promoting fungus[J]. Front Microbiol, 2023, 14: 1301062. |
[28] | Wang LQ, Li XT, Galileya Medison R, et al. Biocontrol efficacy of Burkholderia pyrrocinia S17-377 in controlling rice sheath blight[J]. Biol Contr, 2023, 187: 105368. |
[29] | 全龙萍, 王明, 周波, 等. 草炭和微生物菌剂对‘美乐’葡萄生长发育和果实品质的影响[J]. 植物生理学报, 2023, 59(12): 2344-2354. |
Quan LP, Wang M, Zhou B, et al. Effects of peat and microbial agents on the growth and development of ‘Merlot’ grape[J]. Plant Physiology Journal, 2023, 59(12): 2344-2354. | |
[30] |
李绕勇, 董奎奎, 杨阔, 等. 特基拉芽孢杆菌KXF 6501对猕猴桃灰霉病的防控效果及诱导果实抗性研究[J]. 中国生物防治学报, 2023, 39(4): 933-941.
doi: 10.16409/j.cnki.2095-039x.2023.02.042 |
Li RY, Dong KK, Yang K, et al. Biocontrol efficiency and mechanism of Bacillus tequilensis KXF 6501 against grey mold in postharvest kiwifruit[J]. Chin J Biol Contr, 2023, 39(4): 933-941. | |
[31] | 于会丽, 徐国益, 路绪强, 等. 微生物菌剂对连作西瓜土壤微环境及果实品质的影响[J]. 果树学报, 2020, 37(7): 1025-1035. |
Yu HL, Xu GY, Lu XQ, et al. Effects of microbial agents on soil microenvironment and fruit quality of watermelon under continuous cropping[J]. J Fruit Sci, 2020, 37(7): 1025-1035. | |
[32] | 刘洋洋, 束怀瑞, 陈伟. 混施微生物菌剂和有机肥对‘新红星’ 苹果解袋后果实品质的影响[J]. 中国土壤与肥料, 2021(1): 169-179. |
Liu YY, Shu HR, Chen W. Effect of organic fertilizer containing microbial inoculants on fruit quality of ‘Starkrimson’ apples after bag removal[J]. Soil and Fertilizer Sciences in China, 2021(1): 169-179. | |
[33] |
王君正, 张琪, 高子星, 等. 两种微生物菌剂对有机基质袋培秋黄瓜产量、品质及根际环境的影响[J]. 中国农业科学, 2021, 54(14): 3077-3087.
doi: 10.3864/j.issn.0578-1752.2021.14.013 |
Wang JZ, Zhang Q, Gao ZX, et al. Effects of two microbial agents on yield, quality and rhizosphere environment of autumn cucumber cultured in organic substrate[J]. Sci Agric Sin, 2021, 54(14): 3077-3087.
doi: 10.3864/j.issn.0578-1752.2021.14.013 |
|
[34] | 撒晓梅, 丁琴, 李明. 蚯蚓粪和微生物菌剂对土壤养分及红地球葡萄生理特性的影响[J]. 甘肃农业大学学报, 2023: 1-10. |
Sa XM, Ding Q, LI M. Effects of earthworm cast and microbial agents on soil nutrients and physilogical characteristics of red globe grapes[J]. Journal of Gansu Agricultural University, 2023: 1-10. | |
[35] | 鲁凯珩, 金清, 曹沁, 等. 不同微生物菌剂对田间西红柿品质以及土壤酶活性的影响[J]. 上海师范大学学报: 自然科学版, 2019, 48(2): 197-206. |
Lu KH, Jin Q, Cao Q, et al. Effects of different microbial agents on tomato quality and soil enzyme activity[J]. J Shanghai Norm Univ Nat Sci, 2019, 48(2): 197-206. | |
[36] | Zhang HJ, Wang Y, Yu SC, et al. Plant photosynthesis and dry matter accumulation response of sweet pepper to water-nitrogen coupling in cold and arid environment[J]. Water, 2023, 15(11): 2134. |
[37] |
赵忠娟, 杨凯, 扈进冬, 等. 盐胁迫条件下哈茨木霉ST02对椒样薄荷生长及根区土壤理化性质的影响[J]. 生物技术通报, 2022, 38(7): 224-235.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1251 |
Zhao ZJ, Yang K, Hu JD, et al. Effects of Trichoderma harzianum ST02 on the growth of peppermint and physicochemical properties of root zone soil under salt stress[J]. Biotechnol Bull, 2022, 38(7): 224-235. | |
[38] |
沈开勤, 刘倩, 杨国涛, 等. 减量施磷对土壤磷库组成及解磷微生物的影响[J]. 中国农业科学, 2023, 56(15): 2941-2953.
doi: 10.3864/j.issn.0578-1752.2023.15.009 |
Shen KQ, Liu Q, Yang GT, et al. Effects of phosphorus reduction on soil phosphorus pool composition and phosphorus solubilizing microorganisms[J]. Sci Agric Sin, 2023, 56(15): 2941-2953.
doi: 10.3864/j.issn.0578-1752.2023.15.009 |
|
[39] |
杨肖芳, 郭瑞, 姚燕来, 等. 微生物菌剂对连作地块草莓生长、土壤养分及微生物群落的影响[J]. 核农学报, 2023, 37(6): 1253-1262.
doi: 10.11869/j.issn.1000-8551.2023.06.1253 |
Yang XF, Guo R, Yao YL, et al. Effects of microbial agents on plant growth, soil fertility and microbial communities under continuous cropping strawberry[J]. J Nucl Agric Sci, 2023, 37(6): 1253-1262.
doi: 10.11869/j.issn.1000-8551.2023.06.1253 |
|
[40] | Usmonov A, Yoo SJ, Kim ST, et al. The Bacillus zanthoxyli HS1 strain renders vegetable plants resistant and tolerant against pathogen infection and high salinity stress[J]. Plant Pathol J, 2021, 37(1): 72-78. |
[41] | Paul GK, Mahmud S, Dutta AK, et al. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat(Triticum aestivum L.)[J]. Sci Rep, 2022, 12: 19137. |
[42] | Solanki K, Choudhary SK, Aakash, et al. Response of Bacillus megaterium and Bacillus mucilaginosus strains on growth and nutrient uptake of soybean[J]. Int J Plant Soil Sci, 2023, 35(21): 267-276. |
[1] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
[2] | 刘传和, 贺涵, 邵雪花, 何秀古. 不同覆盖处理对菠萝园土壤代谢物和细菌群落结构的影响[J]. 生物技术通报, 2024, 40(7): 247-258. |
[3] | 金博阳, 秦仕宇, 张明达, 李倩倩, 文静, 沈秀丽, 杜志强. 小龙虾prx 6基因在对抗金黄色葡萄球菌感染中的分子作用机制研究[J]. 生物技术通报, 2024, 40(7): 314-322. |
[4] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[5] | 杨代毅, 樊杨, 屠焰, 徐志宇, 薛颖昊, 孙元丰, 王进, 郝小燕, 马涛. 不同处理对油菜秸秆养分、纤维结构和硫苷含量的影响[J]. 生物技术通报, 2024, 40(6): 172-179. |
[6] | 刘佳宁, 李梦, 杨新森, 吴伟, 裴新梧, 袁潜华. 不同水分管理栽培方式对山栏稻根际土壤细菌群落的影响[J]. 生物技术通报, 2024, 40(3): 242-250. |
[7] | 郝大程, 郑宇薇, 王凡, 韩蕾, 张赜. 真菌电化学修复除草剂污染土壤:降解动力学探索[J]. 生物技术通报, 2024, 40(3): 261-272. |
[8] | 常海霞, 李明源, 麦日艳古·亚生, 周茜, 王继莲. 产胞外多糖多功能促生菌的筛选鉴定及促生评价[J]. 生物技术通报, 2024, 40(3): 273-285. |
[9] | 许沛冬, 易剑锋, 陈迪, 潘磊, 谢丙炎, 赵文军. 贝莱斯芽孢杆菌生防次级代谢产物研究进展[J]. 生物技术通报, 2024, 40(3): 75-88. |
[10] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[11] | 龚丽丽, 余花, 杨杰, 陈天池, 赵双滢, 吴月燕. 葡萄CYP707A基因家族的鉴定及对果实成熟的功能验证[J]. 生物技术通报, 2024, 40(2): 160-171. |
[12] | 雷美玲, 饶文华, 胡进锋, 岳琪, 吴祖建, 范国成. 黄龙病发病芦柑根际土壤细菌群落组成与多样性特征[J]. 生物技术通报, 2024, 40(2): 266-276. |
[13] | 冯路遥, 赵江源, 施竹凤, 莫艳芳, 杨童雨, 申云鑫, 何飞飞, 李铭刚, 杨佩文. 森林根际土壤细菌的分离、鉴定及生物活性筛选[J]. 生物技术通报, 2024, 40(1): 294-307. |
[14] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[15] | 宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||