生物技术通报 ›› 2025, Vol. 41 ›› Issue (5): 129-140.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0980
• 研究报告 • 上一篇
赵婧1(
), 郭茜1, 李睿琦1, 雷滢炀1, 岳爱琴1, 赵晋忠2, 殷丛丛2, 杜维俊1(
), 牛景萍3(
)
收稿日期:2024-10-08
出版日期:2025-05-26
发布日期:2025-06-05
通讯作者:
牛景萍,女,博士,讲师,研究方向 :大豆抗病;E-mail: niujingping@sxau.edu.cn作者简介:赵婧,女,硕士研究生,研究方向 :大豆遗传与种质创新;E-mail: z15517796474@163.com
基金资助:
ZHAO Jing1(
), GUO Qian1, LI Rui-qi1, LEI Ying-yang1, YUE Ai-qin1, ZHAO Jin-zhong2, YIN Cong-cong2, DU Wei-jun1(
), NIU Jing-ping3(
)
Received:2024-10-08
Published:2025-05-26
Online:2025-06-05
摘要:
目的 探究GmGST基因结构及其表达特征,为开展GmGST在大豆抗大豆花叶病毒病中的功能奠定基础。 方法 运用RT-PCR从抗病材料X149中克隆第7号染色体上同一位点GmGSTU12(Glyma.07G139700)、GmGSTU13(Glyma.07G139800)、GmGSTU16(Glyma.07G140100)、GmGSTU47(Glyma.07G140200),并对其进行生物信息学分析;利用RT-qPCR分析GmGST在抗病材料X149中受大豆花叶病毒株系SC15、激素(MeJA、ABA、ETH和SA)、H2O2诱导表达情况和组织特异性表达情况;同时,采用紫外分光光度计检测抗病材料X149受SC15侵染后谷胱甘肽S-转移酶(GSTs)活性。 结果 基因扩增结果表明,GmGSTU12、GmGSTU13、GmGSTU16、GmGSTU47的开放阅读框长度分别为678、678、952和669 bp;生信分析表明,4个基因都属于GST的Tau家族,分别为无信号肽的细胞质、叶绿体和细胞核蛋白,其中,GmGSTU12、GmGSTU13、GmGSTU47为稳定的亲水蛋白,GmGSTU16为疏水性蛋白,均是一种无跨膜结构蛋白;RT-qPCR分析表明,GmGSTU13在叶中的表达量最高,GmGSTU12、GmGSTU16、GmGSTU47在根中的表达量最高;4个基因均受SC15和H2O2诱导上调表达;此外,GmGSTU12和GmGSTU13主要响应MeJA诱导表达;GmGSTU16主要响应MeJA和SA诱导表达;GmGSTU47主要响应MeJA和ABA诱导表达;GSTs活性检测表明受SC15诱导12 h后GSTs活性显著上升,且在48 h活性最大。 结论 4个GmGST基因均属于GST Tau类家族,均能响应SC15、外源激素(MeJA、ABA、ETH、SA)和H2O2诱导表达。
赵婧, 郭茜, 李睿琦, 雷滢炀, 岳爱琴, 赵晋忠, 殷丛丛, 杜维俊, 牛景萍. 大豆GmGST基因簇基因序列分析及诱导表达分析[J]. 生物技术通报, 2025, 41(5): 129-140.
ZHAO Jing, GUO Qian, LI Rui-qi, LEI Ying-yang, YUE Ai-qin, ZHAO Jin-zhong, YIN Cong-cong, DU Wei-jun, NIU Jing-ping. Sequence Analysis and Induced Expression Analysis of GmGST Gene Cluster Genes in Soybean[J]. Biotechnology Bulletin, 2025, 41(5): 129-140.
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) | 退火温度 Annealing temperature (℃) |
|---|---|---|---|
| GmGSTU12 | TTACCAGCTATACTTGTTCC | ATTCAAACAGCAATAACTCAA | 55 |
| GmGSTU13 | GGTTAGAAGTGCTACAATACAAA | AATTCAAACAGCAGTAACTCAAC | 56 |
| GmGSTU16 | ACCTTAGGACCCATCACAGAC | GATTGTGTGAACTACTTGTCG | 58 |
| GmGSTU47 | AGTCAAGAGAAGAAGTGAAGTG | AGGTTGTTGACATTTTCGCT | 55 |
表1 扩增引物信息
Table 1 Primer information for amplification
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) | 退火温度 Annealing temperature (℃) |
|---|---|---|---|
| GmGSTU12 | TTACCAGCTATACTTGTTCC | ATTCAAACAGCAATAACTCAA | 55 |
| GmGSTU13 | GGTTAGAAGTGCTACAATACAAA | AATTCAAACAGCAGTAACTCAAC | 56 |
| GmGSTU16 | ACCTTAGGACCCATCACAGAC | GATTGTGTGAACTACTTGTCG | 58 |
| GmGSTU47 | AGTCAAGAGAAGAAGTGAAGTG | AGGTTGTTGACATTTTCGCT | 55 |
软件名称 Software name | 软件网址 Software URL |
|---|---|
| SignalP4.1 | http://www.cbs.dtu.dk/services /SignalP-4.1/ |
| PlantCARE | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
| ProtParam | http://web.expasy.org/protparam/ |
| SOPMA | https://npsaprabi.ibcp. fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.html |
| Phyre2 | http://www.sbg.bio.ic.ac.uk/phyre2/html |
| Evolview | http://www.omicsclass.com/article/671 |
| MEME | http://meme suite.org/ |
| GSDS2.0 | http://gsds.cbi.pku.edu.cn/ |
| TMHMM-2.0 | http://www.cbs.dtu.dk/services/TMHMM/ |
| WoLF PSORT | https://wolfpsort.hgc.jp/ |
| Pfam | https://www.ebi.ac.uk/interpro/entry/pfam |
表2 在线软件网址
Table 2 Online software URLs
软件名称 Software name | 软件网址 Software URL |
|---|---|
| SignalP4.1 | http://www.cbs.dtu.dk/services /SignalP-4.1/ |
| PlantCARE | http://bioinformatics.psb.ugent.be/webtools/plantcare/html/ |
| ProtParam | http://web.expasy.org/protparam/ |
| SOPMA | https://npsaprabi.ibcp. fr/cgibin/npsa_automat.pl?page=/NPSA/npsa_gor4.html |
| Phyre2 | http://www.sbg.bio.ic.ac.uk/phyre2/html |
| Evolview | http://www.omicsclass.com/article/671 |
| MEME | http://meme suite.org/ |
| GSDS2.0 | http://gsds.cbi.pku.edu.cn/ |
| TMHMM-2.0 | http://www.cbs.dtu.dk/services/TMHMM/ |
| WoLF PSORT | https://wolfpsort.hgc.jp/ |
| Pfam | https://www.ebi.ac.uk/interpro/entry/pfam |
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) |
|---|---|---|
| GmTublin | GGAGTTCACAGAGGCAGAG | CACTTACGCATCACATAGC |
| GmGSTU12 | TGTGTGCAGGGTCCAGATTG | GCTATGGGCTGCTCATTGTG |
| GmGSTU13 | GCGAAGAATCCCTTAACCACC | AGCGGGCTTTGAAGAAGGTA |
| GmGSTU16 | GGGTCCAGATTGCCCTCAAA | ACGGGGTTGGATTTGAGAAGT |
| GmGSTU47 | CAGGGTGCAGATTGCTCTCA | CAAGGGACTCGGATATGGGC |
表3 实时荧光定量引物序列
Table 3 Primers' sequences for real-time quantitative PCR
基因 Gene | 正向引物 Forward primer (5′‒3′) | 反向引物 Reverse primer (5′‒3′) |
|---|---|---|
| GmTublin | GGAGTTCACAGAGGCAGAG | CACTTACGCATCACATAGC |
| GmGSTU12 | TGTGTGCAGGGTCCAGATTG | GCTATGGGCTGCTCATTGTG |
| GmGSTU13 | GCGAAGAATCCCTTAACCACC | AGCGGGCTTTGAAGAAGGTA |
| GmGSTU16 | GGGTCCAGATTGCCCTCAAA | ACGGGGTTGGATTTGAGAAGT |
| GmGSTU47 | CAGGGTGCAGATTGCTCTCA | CAAGGGACTCGGATATGGGC |
组分 Component | 体积 Content/μL |
|---|---|
| MonAmp™ RapidStart Universai SYBR® Green qPCR Mix | 10 |
| Forward primer | 0.4 |
| Reverse primer | 0.4 |
| cDNA | 2 |
| ddH2O | 7.2 |
表4 RT-qPCR反应体系
Table 4 RT-qPCR reaction system
组分 Component | 体积 Content/μL |
|---|---|
| MonAmp™ RapidStart Universai SYBR® Green qPCR Mix | 10 |
| Forward primer | 0.4 |
| Reverse primer | 0.4 |
| cDNA | 2 |
| ddH2O | 7.2 |
蛋白名称 Protein name | 跨膜螺旋数量 Transmembrane helices | 信号肽 Signal peptide | 细胞定位 Subcellular localization |
|---|---|---|---|
| GmGSTU12 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU13 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU16 | 0 | 无 No | 叶绿体Chloroplast |
| GmGSTU47 | 0 | 无 No | 细胞核Nucleus |
表5 GmGST 蛋白的跨膜结构、信号肽和亚细胞定位
Table 5 Transmembrane helices、signal peptide and subcellular localizationof GmGST proteins
蛋白名称 Protein name | 跨膜螺旋数量 Transmembrane helices | 信号肽 Signal peptide | 细胞定位 Subcellular localization |
|---|---|---|---|
| GmGSTU12 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU13 | 0 | 无 No | 细胞质Cytoplasm |
| GmGSTU16 | 0 | 无 No | 叶绿体Chloroplast |
| GmGSTU47 | 0 | 无 No | 细胞核Nucleus |
图3 GmGST的启动子顺式作用元件分析ABRE:脱落酸响应元件;GARE-motif:赤霉素响应元件;G-box:光响应元件;TCA-element:水杨酸响应元件;MBS:干旱胁迫响应元件;ARE:厌氧诱导元件;ERE:乙烯响应元件;CGTCA-motif:茉莉酸响应元件;WUN-motif:伤害响应元件
Fig. 3 Analysis of promoter cis-acting elements of the GmGST geneABRE: Abscisic acid response element; GARE-motif: gibberellin response element; G-box: light-responsive element; TCA-element: salicylic acid response element; MBS: drought stress response element; ARE: anaerobic recovery element; ERE: ethylene responsive element; CGTCA-motif: jasmonic acid response element; WUN-motif: damage response element
基因名称 Gene name | 基因全长 Gene length (bp) | CDS序列 CDS sequence (bp) | 氨基酸数 Amino acid amounts | 分子式 Molecular formula | 分子量 Mw (kD) | 等电点 pI | 不稳定系数 Instability index | 亲水性平均值 GRAVY |
|---|---|---|---|---|---|---|---|---|
| GmGSTU12 | 1 473 | 678 | 225 | C1218H1855N293O334S2 | 26.01 | 5.39 | 30.27 | -0.130 |
| GmGSTU13 | 1 700 | 678 | 225 | C1218H1864N292O335S2 | 26.02 | 5.30 | 30.22 | -0.138 |
| GmGSTU16 | 1 269 | 952 | 316 | C1664H2559N399O464S8 | 35.66 | 5.74 | 37.76 | 0.007 |
| GmGSTU47 | 1 989 | 669 | 222 | C1184H1831N291O327S4 | 25.50 | 6.13 | 36.38 | -0.175 |
表6 GmGST基因序列信息和理化性质分析
Table 6 Analysis of GmGST gene sequence information and physicochemical properties
基因名称 Gene name | 基因全长 Gene length (bp) | CDS序列 CDS sequence (bp) | 氨基酸数 Amino acid amounts | 分子式 Molecular formula | 分子量 Mw (kD) | 等电点 pI | 不稳定系数 Instability index | 亲水性平均值 GRAVY |
|---|---|---|---|---|---|---|---|---|
| GmGSTU12 | 1 473 | 678 | 225 | C1218H1855N293O334S2 | 26.01 | 5.39 | 30.27 | -0.130 |
| GmGSTU13 | 1 700 | 678 | 225 | C1218H1864N292O335S2 | 26.02 | 5.30 | 30.22 | -0.138 |
| GmGSTU16 | 1 269 | 952 | 316 | C1664H2559N399O464S8 | 35.66 | 5.74 | 37.76 | 0.007 |
| GmGSTU47 | 1 989 | 669 | 222 | C1184H1831N291O327S4 | 25.50 | 6.13 | 36.38 | -0.175 |
蛋白质名称 Protein name | α螺旋 Alpha helix (%) | 延伸链 Extended strand (%) | 无规则卷曲 Random coil (%) |
|---|---|---|---|
| GmGSTU12 | 54.22 | 11.56 | 34.22 |
| GmGSTU13 | 54.67 | 11.56 | 33.78 |
| GmGSTU16 | 59.49 | 10.93 | 29.58 |
| GmGSTU47 | 54.50 | 10.36 | 35.14 |
表7 GmGST的二级结构预测
Table 7 Prediction of secondary structure and subcellular localization of GmGST
蛋白质名称 Protein name | α螺旋 Alpha helix (%) | 延伸链 Extended strand (%) | 无规则卷曲 Random coil (%) |
|---|---|---|---|
| GmGSTU12 | 54.22 | 11.56 | 34.22 |
| GmGSTU13 | 54.67 | 11.56 | 33.78 |
| GmGSTU16 | 59.49 | 10.93 | 29.58 |
| GmGSTU47 | 54.50 | 10.36 | 35.14 |
图4 GmGST蛋白三级结构(A)、基因结构(B)分析与蛋白的保守元件(C)和保守基序(D)分析
Fig. 4 Tertiary structure (A), gene structure (B) analysis, and conserved element (C) and conserved sequence (D) analysis of GmGST protein
图5 GmGST 蛋白系统进化分析AtGST:拟南芥;HbGST:橡胶树;TcGST:可可树;PtGST:胡杨果;ZmGST:玉米;GsGST:野生型大豆;MtrGST:苜蓿;CcGST:辣椒;PvGST:菜豆;PDGST:毛果杨
Fig. 5 Analysis of the phylogenetic evolution of GmGST proteinsAtGST: Arabidopsis thaliana; HbGST: Hevea brasiliensis; TcGST: Theobroma cacao; PtGST: Populus euphratica; ZmGST: Zea mays; GsGST: Glycine soja Siebold; MtrGST: Medicago sativa; CcGST: Capsicum annuum L.; PvGST: Phaseolus vulgaris; PDGST: Populus pilosa
图6 大豆GmGST基因受SC15诱导表达模式分析*: P<0.05, **: P<0.01, ***: P<0.001. The same below
Fig. 6 Analysis of the expression pattern of GmGST gene induced by SC15 in soybean
图9 激素处理大豆GmGST基因的表达模式分析A:MeJA处理;B:ABA处理C:ETH处理D:SA处理
Fig. 9 Analysis of the expression pattern of GmGST gene in hormone-treated soybeanA: MeJA treatment; B: ABA treatment; C: ETH treatment; D: SA treatment
| 1 | 刘虹洁, 王金星, 刘昭军, 等. 大豆种子蛋白和油脂含量调控的研究进展 [J]. 热带亚热带植物学报, 2022, 30(6): 791-800. |
| Liu HJ, Wang JX, Liu ZJ, et al. Research progress on protein and oil contents of soybean seeds [J]. J Trop Subtrop Bot, 2022, 30(6): 791-800. | |
| 2 | Mandal KG, Hati KM, Misra AK, et al. Root biomass, crop response and water-yield relationship of mustard (Brassica juncea L.) grown under combinations of irrigation and nutrient application [J]. Irrig Sci, 2010, 28(3): 271-280. |
| 3 | Song YP, Li C, Zhao L, et al. Disease spread of a popular soybean mosaic virus strain (SC7) in Southern China and effects on two susceptible soybean cultivars [J]. Philipp Agric Sci, 2016, 99(4): 355-364. |
| 4 | Tu JC. Symptom severity, yield, seed mottling and seed transmission of soybean mosaic virus in susceptible and resistant soybean: the influence of infection stage and growth temperature [J]. J Phytopathol, 1992, 135(1): 28-36. |
| 5 | Domier LL, Hobbs HA, McCoppin NK, et al. Multiple loci condition seed transmission of soybean mosaic virus (SMV) and SMV-induced seed coat mottling in soybean [J]. Phytopathology, 2011, 101(6): 750-756. |
| 6 | Lallement PA, Meux E, Gualberto JM, et al. Structural and enzymatic insights into Lambda glutathione transferases from Populus trichocarpa, monomeric enzymes constituting an early divergent class specific to terrestrial plants [J]. Biochem J, 2014, 462(1): 39-52. |
| 7 | Nianiou-Obeidat I, Madesis P, Kissoudis C, et al. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications [J]. Plant Cell Rep, 2017, 36(6): 791-805. |
| 8 | Wei LJ, Zhu Y, Liu RY, et al. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus [J]. Sci Rep, 2019, 9(1): 9196. |
| 9 | Hasan MS, Singh V, Islam S, et al. Genome-wide identification and expression profiling of glutathione S-transferase family under multiple abiotic and biotic stresses in Medicago truncatula L [J]. PLoS One, 2021, 16(2): e0247170. |
| 10 | Dixon DP, Hawkins T, Hussey PJ, et al. Enzyme activities and subcellular localization of members of the Arabidopsis glutathione transferase superfamily [J]. J Exp Bot, 2009, 60(4): 1207-1218. |
| 11 | Vaish S, Gupta D, Mehrotra R, et al. Glutathione S-transferase: a versatile protein family [J]. 3 Biotech, 2020, 10(7): 321. |
| 12 | Shao DN, Li YJ, Zhu QH, et al. GhGSTF12, a glutathione S-transferase gene, is essential for anthocyanin accumulation in cotton (Gossypium hirsutum L.) [J]. Plant Sci, 2021, 305: 110827. |
| 13 | Loyall L, Uchida K, Braun S, et al. Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to Chalcone synthase in cell cultures [J]. Plant Cell, 2000, 12(10): 1939-1950. |
| 14 | Mano J, Kanameda S, Kuramitsu R, et al. Detoxification of reactive carbonyl species by glutathione transferase tau isozymes [J]. Front Plant Sci, 2019, 10: 487. |
| 15 | Sappl PG, Carroll AJ, Clifton R, et al. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress [J]. Plant J, 2009, 58(1): 53-68. |
| 16 | Lan T, Yang ZL, Yang X, et al. Extensive functional diversification of the Populus glutathione S-transferase supergene family [J]. Plant Cell, 2009, 21(12): 3749-3766. |
| 17 | Rezaei MK, Shobbar ZS, Shahbazi M, et al. Glutathione S-transferase (GST) family in barley: identification of members, enzyme activity, and gene expression pattern [J]. J Plant Physiol, 2013, 170(14): 1277-1284. |
| 18 | Ghangal R, Rajkumar MS, Garg R, et al. Genome-wide analysis of glutathione S-transferase gene family in chickpea suggests its role during seed development and abiotic stress [J]. Mol Biol Rep, 2020, 47(4): 2749-2761. |
| 19 | Islam S, Rahman IA, Islam T, et al. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: Gaining an insight to their physiological and stress-specific roles [J]. PLoS One, 2017, 12(11): e0187504. |
| 20 | Song S, Wang J, Zhou JY, et al. Single-cell RNA-sequencing of soybean reveals transcriptional changes and antiviral functions of GmGSTU23 and GmGSTU24 in response to soybean mosaic virus [J]. Plant Cell Environ, 2024. |
| 21 | McGonigle B, Keeler SJ, Lau SM, et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize [J]. Plant Physiol, 2000, 124(3): 1105-1120. |
| 22 | Jha B, Sharma A, Mishra A. Expression of SbGSTU (tau class glutathione S-transferase) gene isolated from Salicornia brachiata in tobacco for salt tolerance [J]. Mol Biol Rep, 2011, 38(7): 4823-4832. |
| 23 | Cicero LL, Madesis P, Tsaftaris A, et al. Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses [J]. Phytochemistry, 2015, 116: 69-77. |
| 24 | Yang GY, Xu ZG, Peng SB, et al. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance [J]. Plant Cell Rep, 2016, 35(3): 681-692. |
| 25 | Csiszár J, Váry Z, Horváth E, et al. Role of glutathione transferases in the improved acclimation to salt stress in salicylic acid-hardened tomato [J]. Acta Biol Szeged, 2011, 55(1): 67-68. |
| 26 | Han Q, Chen R, Yang Y, et al. A glutathione S-transferase gene from Lilium regale Wilson confers transgenic tobacco resistance to Fusarium oxysporum [J]. Sci Hortic, 2016, 198: 370-378. |
| 27 | Dixon DP, Cole DJ, Edwards R. Purification, regulation and cloning of a glutathione transferase (GST) from maize resembling the auxin-inducible type-III GSTs [J]. Plant Mol Biol, 1998, 36(1): 75-87. |
| 28 | Wagner U, Edwards R, Dixon DP, et al. Probing the diversity of the Arabidopsis glutathione S-transferase gene family [J]. Plant Mol Biol, 2002, 49(5): 515-532. |
| 29 | Gullner G, Komives T, Király L, et al. Glutathione S-transferase enzymes in plant-pathogen interactions [J]. Front Plant Sci, 2018, 9: 1836. |
| 30 | Yan Y, Jia HH, Wang F, et al. Overexpression of GhWRKY27a reduces tolerance to drought stress and resistance to Rhizoctonia solani infection in transgenic Nicotiana benthamiana [J]. Front Physiol, 2015, 6: 265. |
| 31 | 吴金华, 张西平, 胡言光, 等. 小麦抗白粉病相关基因GST克隆与表达 [J]. 西北植物学报, 2013, 33(1): 34-38. |
| Wu JH, Zhang XP, Hu YG, et al. Cloning and expression of glutathione-S-transferase (GST) gene related to powdery mildew of wheat [J]. Acta Bot Boreali Occidentalia Sin, 2013, 33(1): 34-38. | |
| 32 | 安秀红, 徐锴, 厉恩茂, 等. 苹果抗性相关的谷胱甘肽转移酶基因MdGSTU1的生物信息学和表达分析 [J]. 中国农业科学, 2014, 47(24): 4868-4877. |
| An XH, Xu K, Li EM, et al. Bioinformatics and expression analysis of MdGSTU1 gene encoding a resistance-related glutathione transferase from apple [J]. Sci Agric Sin, 2014, 47(24): 4868-4877. | |
| 33 | 马立功, 孟庆林, 张匀华, 等. 向日葵谷胱甘肽-S-转移酶基因的克隆及抗病功能研究 [J]. 中国油料作物学报, 2015, 37(5): 635-643. |
| Ma LG, Meng QL, Zhang YH, et al. Clone and function of a glutathione-S-transferase gene from sunflower (Helianthus annuus) [J]. Chin J Oil Crop Sci, 2015, 37(5): 635-643. | |
| 34 | Babu MH, Gagarinova AG, Brandle JE, et al. Association of the transcriptional response of soybean plants with soybean mosaic virus systemic infection [J]. J Gen Virol, 2008, 89(Pt 4): 1069-1080. |
| 35 | Zhang K, Shen YC, Wang T, et al. GmGSTU 13 is related to the development of mosaic symptoms in soybean plants infected with soybean mosaic virus [J]. Phytopathology, 2022, 112(2): 452-459. |
| 36 | Wang QP, Zhang LM, Xue CL, et al. GST family genes in jujube actively respond to phytoplasma infection [J]. Hortic Plant J, 2024, 10(1): 77-90. |
| 37 | Li ZK, Chen B, Li XX, et al. A newly identified cluster of glutathione S-transferase genes provides Verticillium wilt resistance in cotton [J]. Plant J, 2019, 98(2): 213-227. |
| 38 | Niu JP, Zhao J, Guo Q, et al. WGCNA reveals hub genes and key gene regulatory pathways of the response of soybean to infection by Soybean mosaic virus [J]. Genes, 2024, 15(5): 566. |
| 39 | Ahmad MZ, Nasir JA, Ahmed S, et al. Genome-wide analysis of glutathione S-transferase gene family in G. max [J]. Biologia, 2020, 75(10): 1691-1705. |
| 40 | Edwards R, Dixon DP, Walbot V. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health [J]. Trends Plant Sci, 2000, 5(5): 193-198. |
| 41 | Sylvestre-Gonon E, Law SR, Schwartz M, et al. Functional, structural and biochemical features of plant serinyl-glutathione transferases [J]. Front Plant Sci, 2019, 10: 608. |
| 42 | Liu ZM, Faizan M, Chen C, et al. The combined analysis of transcriptome and antioxidant enzymes revealed the mechanism of EBL and ZnO NPs enhancing Styrax tonkinensis seed abiotic stress resistance [J]. Genes, 2022, 13(11): 2170. |
| 43 | Akbar S, Wei Y, Yuan Y, et al. Gene expression profiling of reactive oxygen species (ROS) and antioxidant defense system following Sugarcane mosaic virus (SCMV) infection [J]. BMC Plant Biol, 2020, 20(1): 532. |
| 44 | Garg N, Manchanda G. ROS generation in plants: Boon or bane? [J]. Plant Biosyst Int J Deal Aspects Plant Biol, 2009, 143(1): 81-96. |
| 45 | Dixon DP, Cummins L, Cole DJ, et al. Glutathione-mediated detoxification systems in plants [J]. Curr Opin Plant Biol, 1998, 1(3): 258-266. |
| 46 | Chen W, Chao G, Singh KB. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBF- and OBP1-binding sites [J]. Plant J, 1996, 10(6): 955-966. |
| 47 | Polidoros AN, Scandalios JG. Role of hydrogen peroxide and different classes of antioxidants in the regulation of catalase and glutathione S-transferase gene expression in maize (Zea mays L.) [J]. Physiol Plant, 1999, 106(1): 112-120. |
| 48 | Xu FX, Lagudah ES, Moose SP, et al. Tandemly duplicated Safener-induced glutathione S-transferase genes from Triticum tauschii contribute to genome- and organ-specific expression in hexaploid wheat [J]. Plant Physiol, 2002, 130(1): 362-373. |
| 49 | Hossain MZ, Fujita M. Purification of a phi-type glutathione S-transferase from pumpkin flowers, and molecular cloning of its cDNA [J]. Biosci Biotechnol Biochem, 2002, 66(10): 2068-2076. |
| 50 | Zhu XL, Wang BQ, Wang X, et al. Genome-wide identification, characterization and expression analysis of the LIM transcription factor family in quinoa [J]. Physiol Mol Biol Plants, 2021, 27(4): 787-800. |
| 51 | Zhu XL, Wang BQ, Wang X, et al. Identification of the CIPK-CBL family gene and functional characterization of CqCIPK14 gene under drought stress in quinoa [J]. BMC Genomics, 2022, 23(1): 447. |
| 52 | Kaur A, Pati PK, Pati AM, et al. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa [J]. PLoS One, 2017, 12(9): e0184523. |
| 53 | Wani SH, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants [J]. Crop J, 2016, 4(3): 162-176. |
| 54 | Zhou JM, Goldsbrough PB. An Arabidopsis gene with homology to glutathione S-transferases is regulated by ethylene [J]. Plant Mol Biol, 1993, 22(3): 517-523. |
| [1] | 刘涛, 王志淇, 吴文博, 石文婷, 王超楠, 杜崇, 杨中敏. 马铃薯GRAM基因家族鉴定与表达分析[J]. 生物技术通报, 2025, 41(4): 145-155. |
| [2] | 孙天国, 衣兰, 秦旭洋, 乔梦雪, 谷新颖, 韩艺, 沙伟, 张梅娟, 马天意. 大白菜DABB基因家族的全基因组鉴定及盐碱胁迫下的表达分析[J]. 生物技术通报, 2025, 41(4): 156-165. |
| [3] | 王田田, 常雪瑞, 黄婉洋, 黄嘉欣, 苗如意, 梁燕平, 王静. 辣椒GASA基因家族的鉴定及分析[J]. 生物技术通报, 2025, 41(4): 166-175. |
| [4] | 黄金恒, 黄茜, 张家燕, 周新裕, 廖沛然, 杨全. 广金钱草C3H基因家族鉴定及不同品种表达分析[J]. 生物技术通报, 2025, 41(4): 243-255. |
| [5] | 班秋艳, 赵鑫月, 迟文静, 黎俊生, 王琼, 夏瑶, 梁丽云, 贺巍, 李叶云, 赵广山. 茶树光敏色素互作因子CsPIF3a的克隆及其与光温逆境的响应[J]. 生物技术通报, 2025, 41(4): 256-265. |
| [6] | 王琛, 刘国梅, 陈畅, 张晋龙, 姚琳, 孙璇, 杜春芳. 白菜型油菜CCDs家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(3): 161-170. |
| [7] | 彭婷, 林颖, 谭圆圆, 饶英, 黄覃, 张文娥, 汪波, 田瑞丰, 刘国锋. 多星韭AwANSs基因的克隆与表达分析[J]. 生物技术通报, 2025, 41(3): 230-239. |
| [8] | 林紫依, 吴一舟, 叶芳贤, 朱淑颖, 刘燕敏, 刘骕骦. 大豆GmPM31基因启动子响应高温高湿胁迫的功能分析[J]. 生物技术通报, 2025, 41(3): 90-97. |
| [9] | 马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138. |
| [10] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
| [11] | 贾子健, 王宝强, 陈立飞, 王义真, 魏小红, 赵颖. 响应NO的藜麦CHX基因家族在盐碱胁迫下的表达模式[J]. 生物技术通报, 2025, 41(2): 163-174. |
| [12] | 钱政毅, 吴绍芳, 曹舒怡, 宋雅欣, 潘鑫峰, 李兆伟, 范凯. 睡莲NAC转录因子的鉴定及其表达分析[J]. 生物技术通报, 2025, 41(2): 234-247. |
| [13] | 向春繁, 李勒松, 王娟, 梁艳丽, 杨生超, 栗孟飞, 赵艳. 当归肉桂醇脱氢酶AsCAD功能鉴定及表达分析[J]. 生物技术通报, 2025, 41(2): 295-308. |
| [14] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
| [15] | 宋英培, 王灿, 周会汶, 孔可可, 许孟歌, 王瑞凯. 基于全基因组关联分析和遗传多样性的大豆裂荚性状解析[J]. 生物技术通报, 2025, 41(2): 97-106. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||