生物技术通报 ›› 2017, Vol. 33 ›› Issue (1): 35-47.doi: 10.13560/j.cnki.biotech.bull.1985.2017.01.004
王丽苹1, 罗云孜1, 2
收稿日期:
2016-09-26
出版日期:
2017-01-25
发布日期:
2017-01-19
作者简介:
王丽苹,女,硕士,研究方向:天然产物合成与结构修饰;E-mail:2015224060103@stu.scu.edu.cn
基金资助:
WANG Li-ping1, LUO Yun-zi1, 2
Received:
2016-09-26
Published:
2017-01-25
Online:
2017-01-19
摘要: 天然产物作为临床用药的重要组成部分和新药发现的重要来源,已经成为医药领域不可或缺的成员之一。但是传统的天然产物筛选方法在一定程度上制约了新型天然产物的开发,鉴别与改造天然产物的生物合成路径为全新天然产物的发现提供了思路。近年来,生物信息学和合成生物学技术的蓬勃发展为天然产物的探索与改造带来了新的曙光。归纳总结了合成生物学技术相关的基因重组策略和基因簇调控方法,并讨论了其在天然产物研究中的应用及存在的问题。
王丽苹, 罗云孜. 合成生物学在天然产物研究中的应用[J]. 生物技术通报, 2017, 33(1): 35-47.
WANG Li-ping, LUO Yun-zi. Applications of Synthetic Biology in the Research of Natural Product[J]. Biotechnology Bulletin, 2017, 33(1): 35-47.
[1] Luo Y, Enghiad B, Zhao H. New tools for reconstruction and heterologous expression of natural product biosynthetic gene clusters[J]. Natural Product Reports, 2015, 33:174-182. [2] Zhang L, Yan K, Zhang Y, et al. High-throughput synergy screening identifies microbial metabolites as combination agents for the treatment of fungal infections[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104:4606-4611. [3] Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006, 440:940-943. [4] Galanie S, Thodey K, Trenchard IJ, et al. Complete biosynthesis of opioids in yeast[J]. Science, 2015, 349:1095-1100. [5] Miao V, Coëffetlegal MF, Brian P, et al. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology, 2005, 151:1507-1523. [6] Liao G, Shi T, Xie J. Regulation mechanisms underlying the biosynthesis of daptomycin and related lipopeptides[J]. Journal of Cellular Biochemistry, 2012, 113:735-741. [7] Kirby J, Keasling JD. Biosynthesis of plant isoprenoids:perspectives for microbial engineering[J]. Annual Review of Plant Biology, 2009, 60:335-355. [8] Majumder A, Jha S. Biotechnological approaches for the production of potential anticancer leads podophyllotoxin and paclitaxel:An overview[J]. Journal of Biological Sciences, 2009, 1:46-69. [9] Walker K, Croteau R. Taxol biosynthetic genes[J]. Phytochemi-stry, 2001, 58:1-7. [10] Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis:an interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports, 2012, 29:683-696. [11] Kanehisa M, Goto S. KEGG:kyoto encyclopedia of genes and genomes[J]. Nucleic Acids Research, 2000, 27:29-34. [12] Misra BB. An updated snapshot of recent advances in transcriptomics and genomics of phytomedicinals[J]. Journal of Postdoctoral Research February, 2014, 2:1-14. [13] Blin K, Medema MH, Kazempour D, et al. AntiSMASH 2.0-a versatile platform for genome mining of secondary metabolite producers[J]. Nucleic Acids Research, 2013, 41:204-212. [14] Khaldi N, Seifuddin FT, Turner G, et al. SMURF:Genomic mapping of fungal secondary metabolite clusters[J]. Fungal Genetics & Biology Fg & B, 2010, 47:736-741. [15] Hwang KS, Kim HU, Charusanti P, et al. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites[J]. Biotechnology Advances, 2014, 32:255-268. [16] Chao R, Yuan Y, Zhao H. Recent advances in DNA assembly technologies[J]. FEMS Yeast Research, 2015, 15:1-9. [17] Luo Y, Li BZ, Liu D, et al. ChemInform abstract:Engineered biosynthesis of natural products in heterologous hosts[J]. Cheminform, 2015, 46:5265-5290. [18] Weber T, Charusanti P, Musiolkroll EM, et al. Metabolic engineering of antibiotic factories:new tools for antibiotic production in actinomycetes[J]. Trends in Biotechnology, 2014, 33:15-26. [19] Gaj T, Gersbach CA, Iii CFB. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends in Biotechnology, 2013, 31:397-405. [20] Luo Y, Cobb RE, Zhao H. Recent advances in natural product discovery[J]. Current Opinion in Biotechnology, 2014, 30:230-237. [21] Gibson DG, Lei Y, Chuang RY, et al. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6:343-345. [22] Werner S, Engler C, Weber E, et al. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system[J]. Bioengineered Bugs, 2012, 3:38-43. [23] Chen WH, Qin ZJ, Wang J, et al. The MASTER(methylation-assisted tailorable ends rational)ligation method for seamless DNA assembly[J]. Nucleic Acids Research, 2013, 41:395-408. [24] Zhang L, Zhao G, Ding X. Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination[J]. Scientific Reports, 2011, 1:40-40. [25] Colloms SD, Merrick CA, Olorunniji FJ, et al. Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination[J]. Nucleic Acids Research, 2014, 42:194-201. [26] Jiang Y, Chen B, Duan C, et al. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system[J]. Applied & Environmental Microbiology, 2015, 81:2506-2514. [27] Jin P, Ding W, Du G, et al. DATEL:a scarless and sequence-independent DNA assembly method using thermostable exonucleases and ligase[J]. Acs Synthetic Biology, 2016, 5(9):1028-1032. [28] Miao V, Coëffetlegal MF, Brian P, et al. Daptomycin biosynthesis in Streptomyces roseosporus:cloning and analysis of the gene cluster and revision of peptide stereochemistry[J]. Microbiology, 2005, 151:1507-1523. [29] Shao Z, Luo Y, Zhao H. Rapid characterization and engineering of natural product biosynthetic pathways via DNA assembler[J]. Molecular Biosystems, 2011, 7:1056-1059. [30] Yamanaka K, Reynolds KA, Kersten RD, et al. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111:1957-1962. [31] Schimming O, Fleischhacker F, Nollmann FI, et al. Yeast homologous recombination cloning leading to the novel peptides ambactin and xenolindicin[J]. Chembiochem, 2014, 15:1290-1294. [32] Fu J, Bian X, Hu S, et al. Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting[J]. Nature Biotechnology, 2012, 30:440-446. [33] Yin J, Hoffmann M, Bian X, et al. Direct cloning and heterologous expression of the salinomycin biosynthetic gene cluster from Streptomyces albus DSM41398 inStreptomyces coelicolor A3(2)[J]. Scientific Reports, 2015, 5:15081. [34] Lee NC, Larionov V, Kouprina N. Highly efficient CRISPR/Cas9-mediated TAR cloning of genes and chromosomal loci from complex genomes in yeast[J]. Nucleic Acids Research, 2015, 43(8):e55. [35] Engler C, Kandzia R, Marillonnet S. A one pot, one step, precision cloning method with high throughput capability[J]. PLoS One, 2008, 3:e3647. [36] Weber E, Engler C, Gruetzner R, et al. A modular cloning system for standardized assembly of multigene constructs[J]. PLoS One, 2011, 6:e16765. [37] Marillonnet S, Werner S. Assembly of multigene constructs using golden gate cloning[J]. Methods in Molecular Biology, 2015, 1321:269-284. [38] Iverson SV. Improved modular multipart DNA assembly, development of a DNA part toolkit for E. coli, and applications in traditional biology and bioelectronic systems[J]. Dissertations & Theses-Gradworks, 2016. [39] Moore SJ, Lai HE, Kelwick RJR, et al. EcoFlex:A multifunctional MoClo kit for E. coli synthetic biology[J]. Acs Synthetic Biology, 2016, 5(10):1059-1069. [40] Li M, Elledge S. Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC[J]. Nature Methods, 2007, 4:251-256. [41] Zhang Y, Werling U, Edelmann W. Seamless ligation cloning extract(SLiCE)cloning method[J]. Methods in Molecular Biology, 2014, 1116:235-244. [42] Nour-Eldin HH, Geu-Flores F, Halkier BA. USER cloning and USER fusion:the ideal cloning techniques for small and big laboratories[J]. Methods in Molecular Biology, 2010, 643:185-200. [43] Wang JW, Wang A, Li K, et al. CRISPR/Cas9 nuclease cleavage combined with Gibson assembly for seamless cloning[J]. Biotechniques, 2015, 58:161-170. [44] Jiang W, Zhao X, Gabrieli T, et al. Cas9-Assisted Targeting of CHromosome segments CATCH enables one-step targeted cloning of large gene clusters[J]. Nature Communications, 2015, 6:8101. [45] Zhang L, Wang L, Wang J, et al. DNA cleavage is independent of synapsis during Streptomyces phage phiBT1 integrase-mediated site-specific recombination[J]. Journal of Molecular Cell Biology, 2010, 2:264-275. [46] Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways[J]. Nucleic Acids Research, 2009, 37(2):e16. [47] Resnick MA, Larionov VL, Kouprina NY, et al. Transformation-associated recombination cloning:US, 6391642[P]. 2002-5-21. [48] Bian X, Huang F, Stewart FA, et al. Direct cloning, genetic engineering, and heterologous expression of the syringolin biosynthetic gene cluster in E. colithrough Red/ET recombineering[J]. Chembiochem, 2012, 13:1946-1952. [49] Bassalo MC, Garst AD, Halweg-Edwards AL, et al. Rapid and efficient one-step metabolic pathway integration in E. coli[J]. Acs Synthetic Biology, 2016, 5(7):561-568. [50] Du D, Wang L, Tian Y, et al. Genome engineering and direct cloning of antibiotic gene clusters via phage ϕBT1 integrase-mediated site-specific recombination inStreptomyces[J]. Scientific Reports, 2015, 5:8740. [51] Jin WB, Ye R, Clevenger KD, et al. Fungal artificial chromosomes for mining of the fungal secondary metabolome[J]. Bmc Genomics, 2015, 16:1-10. [52] Kang HS, Charloppowers Z, Brady SF. Multiplexed CRISPR/Cas9 and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast[J]. Acs Synthetic Biology, 2016, 5(9):1002-1010. [53] Liu X. Generate a bioactive natural product library by mining bacterial cytochrome P450 patterns[J]. Synthetic & Systems Biotechnology, 2016, 1:95-108. [54] Komatsu M, Uchiyama T, Omura S, et al. Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107:2646-2651. [55] Cobb RE, Wang Y, Zhao H. High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system[J]. Acs Synthetic Biology, 2015, 4(6):273-728. [56] Bai C, Zhang Y, Zhao X, et al. Exploiting a precise design of universal synthetic modular regulatory elements to unlock the microbial natural products inStreptomyces[J]. Proceedings of the National Academy of Sciences, 2015, 112:12181-12186. [57] Chen Y, Xiang G, Yu J, et al. Synergy between methylerythritol phosphate pathway and mevalonate pathway for isoprene production in Escherichia coli[J]. Metabolic Engineering, 2016, 37:79-91. [58] Ulanova D, Kitani S, Fukusaki E, et al. SdrA, a new DeoR family regulator involved in streptomyces avermitilis morphological development and antibiotic production[J]. Applied & Environmental Microbiology, 2013, 79:7916-7921. [59] Komatsu M, Komatsu K, Koiwai H, et al. Engineered streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites[J]. Acs Synthetic Biology, 2013, 2:384-396. [60] Dangel V, Westrich L, Smith MCM, et al. Use of an inducible promoter for antibiotic production in a heterologous host[J]. Applied Microbiology & Biotechnology, 2010, 87:261-269. [61] Luo Y, Huang H, Liang J, et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster[J]. Nature Communications, 2013, 4:94-105. [62] Jang KH, Nam SJ, Locke JB, et al. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete[J]. Angewandte Chemie International Edition, 2013, 52:7822-7824. [63] Alt S, Wilkinson B. Biosynthesis of the novel macrolide antibiotic anthracimycin[J]. Acs Chemical Biology, 2015, 10(11):2468-2479. [64] Van Heel AJ, Kloosterman TG, Montalbanlopez M, et al. Discovery, production and modification of 5 novel lantibiotics using the promiscuous nisin modification machinery[J]. Acs Synthetic Biology, 2016, 5(10):1146-1154. [65] Reed JW, Hudlicky T. The quest for a practical synthesis of morphine alkaloids and their derivatives by chemoenzymatic methods[J]. Accounts of Chemical Research, 2015, 48:674-687. [66] Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae[J]. Nature Chemical Biology, 2008, 4:564-573. [67] Thodey K, Galanie S, Smolke CD. A microbial biomanufacturing platform for natural and semi-synthetic opiates[J]. Nature Chemical Biology, 2014, 10:837-844. [68] Deloache WC, Russ ZN, Narcross L, et al. An enzyme-coupled biosensor enables(S)-reticuline production in yeast from glucose[J]. Nature Chemical Biology, 2015, 11:465-471. [69] Fossati E, Narcross L, Ekins A, et al. Synthesis of morphinan alkaloids in Saccharomyces cerevisiae[J]. PLoS One, 2015, 10:e0124459. [70] Kirby J, Keasling JD. Biosynthesis of plant isoprenoids:perspectives for microbial engineering[J]. Annual Review of Plant Biology, 2009, 60:335-355. [71] Guerra-Bubb J, Croteau R, Williams RM. The early stages of taxol biosynthesis:an interim report on the synthesis and identification of early pathway metabolites[J]. Natural Product Reports, 2012, 29:683-696. [72] Yan X, Fan Y, Wei W, et al. Production of bioactive ginsenoside compound K in metabolically engineered yeast[J]. Cell Research, 2014, 24:770-773. [73] Lau W, Sattely ES. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone[J]. Science, 2015, 349:1224-1228. [74] Wang L, Hu Y, Zhang Y, et al. Role of sgcR3 in positive regulation of enediyne antibiotic C-1027 production of Streptomyces globisporus C-1027[J]. Bmc Microbiology, 2009, 9:12683-12690. [75] Gottelt M, Kol S, Gomezescribano JP, et al. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in streptomyces coelicolor A3(2)[J]. Microbiology, 2010, 156:2343-2353. [76] Law BJC, Struck AW, Bennett MR, et al. Site-specific bioalkylation of rapamycin by the RapM 16-O-methyltransferase[J]. Chemical Science, 2015, 6:2885-2892. [77] Nguyen KT, Ritz D, Gu JQ, et al. Combinatorial biosynthesis of novel antibiotics related to daptomycin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103:17462-17467. [78] Zarinstutt JS, Barberi TT, Gao H, et al. Prospecting for new bacterial metabolites:a glossary of approaches for inducing, activating and upregulating the biosynthesis of bacterial cryptic or silent natural products[J]. Natural Product Reports, 2015, 33:54-72. [79] Liu Y, Tao W, Wen S, et al. In vitro CRISPR/Cas9 system for efficient targeted DNA editing[J]. Mbio, 2015, 6(6):e01714-15. |
[1] | 周璐祺, 崔婷茹, 郝楠, 赵雨薇, 赵斌, 刘颖超. 化学蛋白质组学在天然产物分子靶标鉴定中的应用[J]. 生物技术通报, 2023, 39(9): 12-26. |
[2] | 陈小玲, 廖东庆, 黄尚飞, 陈英, 芦志龙, 陈东. 利用CRISPR/Cas9系统改造酿酒酵母的研究进展[J]. 生物技术通报, 2023, 39(8): 148-158. |
[3] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[4] | 石佳鑫, 刘凯, 朱金洁, 祁显涛, 谢传晓, 刘昌林. 基因编辑技术改良玉米株型增加杂交种产量[J]. 生物技术通报, 2023, 39(8): 62-69. |
[5] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[6] | 施炜涛, 姚春鹏, 魏文康, 王蕾, 房元杰, 仝钰洁, 马晓姣, 蒋文, 张晓爱, 邵伟. 利用CRISPR/Cas9技术构建MDH2敲除细胞株及抗呕吐毒素效应研究[J]. 生物技术通报, 2023, 39(7): 307-315. |
[7] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[8] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[9] | 马玉倩, 孙东辉, 岳浩峰, 辛佳瑜, 刘宁, 曹志艳. 具有辅助降解纤维素功能的大斑刚毛座腔菌糖苷水解酶GH61的鉴定、异源表达及功能分析[J]. 生物技术通报, 2023, 39(4): 124-135. |
[10] | 陈楠楠, 王春来, 蒋振忠, 焦鹏, 关淑艳, 马义勇. 玉米ZmDHN15基因在烟草中的遗传转化及抗冷性分析[J]. 生物技术通报, 2023, 39(4): 259-267. |
[11] | 程静雯, 曹磊, 张艳敏, 叶倩, 陈敏, 谭文松, 赵亮. CHO细胞多基因工程改造策略的建立及应用[J]. 生物技术通报, 2023, 39(2): 283-291. |
[12] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[13] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[14] | 王兵, 赵会纳, 余婧, 陈杰, 骆梅, 雷波. 利用CRISPR/Cas9系统研究REVOLUTA参与烟草叶芽发育的调控[J]. 生物技术通报, 2023, 39(10): 197-208. |
[15] | 周闪闪, 黄远龙, 黄建忠, 李善仁. 溶杆菌中活性天然产物的研究进展[J]. 生物技术通报, 2023, 39(10): 41-49. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||