[1] 陈永林, 宋绍宗, 邓小山. 中国渤海及黄海海面迁飞昆虫的初步观察[J]. 昆虫学报, 1963, 7(2):137-148. [2] 刘辉, 李克斌, 尹姣, 等. 群居型与散居型东亚飞蝗飞行能力的比较研究[J]. 植物保护, 2007, 33(2):34-37. [3] 付晓伟, 吴孔明. 迁飞性昆虫对全球气候变化的响应[J]. 中国农业科学, 2015, 48(S1):1-15. [4] Guerra PA, Reppert SM.Sensory basis of lepidopteran migration:focus on the monarch butterfly[J]. Curr Opin Neurobiol, 2015, 34:20-28. [5] Sappington TW.Migratory flight of insect pests within a year-round distribution:European corn borer as a case study[J]. Journal of Integrative Agriculture, 2018, 17(7):1485-1505. [6] Dreyer D, Frost B, et al.The earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian bogong moth[J]. Curr Biol, 2018, 28(13):2160-2166. [7] Frazier MR, Harrison JF, Kirkton SD, et al.Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology[J]. J Exp Biol, 2008, 211(13):2116-2122. [8] Prokop J, Pecharova M, Nel A, et al.Paleozoic nymphal wing pads support dual model of insect wing origins[J]. Current Biology, 2017, 27(2):263-269. [9] Rothbacher U, Laurent MN, Blitz IL, et al.Functional conservation of the Wnt signaling sathway revealed by ectopic expression of Drosophila dishevelled in Xenopus[J]. Developmental Biology, 1995, 170(2):717-721. [10] Wang JN, Li L, Li LY, et al.Emerging role and therapeutic implication of Wnt signaling pathways in liver fibrosis[J]. Gene, 2018, 674:57-69. [11] Zhang HW, Zhang H, Zhang YQ, et al.Dishevelled-DEP domain interacting protein(DDIP)inhibits Wnt signaling by promoting TCF4 degradation and disrupting the TCF4/beta-catenin complex[J]. Cell Signal, 2010, 22(11):1753-1760. [12] Gui J, Huang Y, Montanari M, et al.Coupling between dynamic 3D tissue architecture and BMP morphogen signaling during Drosophila wing morphogenesis[J]. Proc Natl Acad Sci USA, 2019, 116(10):4351-4361. [13] Matsuda S, Harmansa S, Affolter M.BMP morphogen gradients in flies[J]. Cytokine Growth Factor Reviews, 2016, 27:119-127. [14] Matsuda S, Yoshiyama N, et al.Dpp/BMP transport mechanism is required for wing venation in the sawfly Athalia rosae[J]. Insect Biochem Mol Biol, 2013, 43(5):466-473. [15] Ye X, Liu A.Hedgehog signaling:mechanisms and evolution[J]. Frontiers in Biology, 2011, 6(6):504-521. [16] Jacob L, Lum, L. Hedgehog signaling pathway in Drosophila[J]. Sci STKE, 2007, 2007(407):cm7. [17] Villarreal CM, Darakananda K, et al.Hedgehog signaling regulates imaginal cell differentiation in a basally branching holometabolous insect[J]. Dev Biol, 2015, 404(2):125-135. [18] Lee RT, Zhao Z, Ingham PW.Hedgehog signalling[J]. Development, 2016, 143(3):367-372. [19] Gou J, Lin L, Othmer HG.A model for the Hippo pathway in the Drosophila wing disc[J]. Biophys J, 2018, 115(4):737-747. [20] Meng ZP, Moroishi T, Guan KL.Mechanisms of Hippo pathway regulation[J]. Gene Dev, 2016, 30(1):1-17. [21] Showers WB.Migratory ecology of the black cutworm[J]. Annual Review of Entomology, 1997, 42:393-425. [22] Haug JT, Haug C, Garwood RJ.Evolution of insect wings and development - new details from Palaeozoic nymphs[J]. Biol Rev Camb Philos Soc, 2016, 91(1):53-69. [23] Brisson JA, Ishikawa A, Miura T.Wing development genes of the pea aphid and differential gene expression between winged and unwinged morphs[J]. Insect Mol Biol, 2010, 19(Suppl 2):63-73. [24] Swarup S, Pradhan-Sundd T, Verheyen EM.Genome-wide identification of phospho-regulators of Wnt signaling in Drosophila[J]. Development, 2015, 142(8):1502-1515. [25] Girardi F, Le Grand F.Wnt signaling in skeletal muscle development and regeneration[J]. Prog Mol Biol Transl Sci, 2018, 153:157-179. [26] Gajewski KM, Wang JB, Schulz RA.Calcineurin function is required for myofilament formation and troponin I isoform transition in Drosophila indirect flight muscle[J]. Developmental Biology, 2006, 289(1):17-29. [27] Ohde T, Takehana Y, Shiotsuki T, et al.CRISPR/Cas9-based heritable targeted mutagenesis in Thermobia domestica:A genetic tool in an apterygote development model of wing evolution[J]. Arthropod Struct Dev, 2018, 47(4):362-369. |