生物技术通报 ›› 2022, Vol. 38 ›› Issue (5): 123-135.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1074
收稿日期:
2021-08-23
出版日期:
2022-05-26
发布日期:
2022-06-10
作者简介:
古丽加马力·艾萨,女,硕士研究生,研究方向:应用微生物;E-mail: 基金资助:
GULJAMAL·Aisa 1(), XING Jun2, LI An1, ZHANG Rui1()
Received:
2021-08-23
Published:
2022-05-26
Online:
2022-06-10
摘要:
本文针对新疆传统发酵剂开菲尔粒中微生物对多环芳烃类化合物苯并(α)芘的作用机制这一问题,研究50 mg/L苯并(α)芘胁迫作用下,开菲尔粒微生物在发酵乳中代谢产物发生的特征性变化。采用非靶向代谢组学技术,结合主成分分析和偏小二乘判别分析方法,确认了苯乙酸、苯酚、原儿茶酸、邻苯二甲酸二异丙酯、邻苯二甲酸等为中间代谢特征产物,在KEGG数据库共注释到56条代谢途径,其中富集代谢产物较多、显著性高、与氨基酸代谢有关的关键通路有3条,中间代谢物质在脱氢酶、双加氧酶、脱氢异构酶等一系列酶的作用下将苯环裂解,因此推断开菲尔粒中存在微生物菌株可能通过“萘途径”“邻苯二甲酸途径”“苯丙氨酸途径”3条代谢途径对苯并(α)芘进行降解。研究可以为微生物对苯并(α)芘的作用机制提供一定的理论基础,可以为降低苯丙(a)芘对人体的危害提出可能的生物防治策略,为开菲尔发酵乳制品在食品工业中的合理开发应用提供研究依据。
古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135.
GULJAMAL·Aisa , XING Jun, LI An, ZHANG Rui. Non-targeted Metabolomics Analysis of Benzo(α)pyrene by Microorganisms in Kefir Grains[J]. Biotechnology Bulletin, 2022, 38(5): 123-135.
图1 苯并(α)芘胁迫下不同发酵阶段样品主成分分析 A:绿色5个圈表示在苯并(α)芘胁迫下发酵0 h的5个开菲尔样品;B:红色5个圈表示在苯并(α)芘胁迫下发酵8 h的5个开菲尔样品;C:橙色5个圈表示在苯并(α)芘胁迫下发酵16 h的5个开菲尔样品;D:肉红色5个圈表示在苯并(α)芘胁迫下发酵24 h的5个开菲尔样品;E:黄色5个圈表示在苯并(α)芘胁迫下发酵32 h的5个开菲尔样品
Fig. 1 Principal component analysis of the samples at diff-erent fermentation stages under benzo(α)pyrene stress A:Five green circles indicate five Kefir samples fermented for 0 h under benzo(α)pyrene stress. B:Five red circles indicate five Kefir samples fermented for 8 h under benzo(α)pyrene stress. C:Five orange circles indicate five Kefir samples fermented for 16 h under benzo(α)pyrene stress. D:Five red circles indicate five Kefir samples fermented for 24 h under benzo(α)pyrene stress. E:Yellow five circles indicate five Kefir samples fermented for 32 h under benzo(α)pyrene stress
图4 苯并(α)芘胁迫下不同发酵阶段样品中代谢物百分比堆积柱形图
Fig. 4 Stacked histogram of the percentages of metabolites in the samples at different fermentation stages under benzo(α)pyrene stress
图5 苯并(α)芘胁迫下不同发酵阶样品扮演生物学角色的代谢物百分比
Fig. 5 Percentage of metabolites playing a biological role in the samples of different fermentation stages under benzo(α)pyrene stress
图6 苯并(α)芘胁迫下不同发酵阶段样品代谢物差异箱式图
Fig.6 Box plot of the differences in metabolites of the samples at different fermentation stages under benzo(α)pyrene stress *P<0.05,**P<0.01,***P<0.001
图7 苯并(α)芘胁迫下不同发酵阶段样品PLS-DA代谢物重要性图
Fig.7 Importance map of PLS-DA metabolites in the samples at different fermentation stages under benzo(α)pyrene stress
图8 苯并(α)芘胁迫下不同发酵阶段样品差异代谢物显著富集的代谢通路(ORA富集分析)
Fig.8 Metabolic pathways with significant enrichment of differential metabolites in the samples at different fermentation stages under benzo(α)pyrene stress(ORA enrichment analysis)
图9 苯并(α)芘胁迫下不同发酵阶段样品差异代谢物显著富集的代谢通路拓扑分析
Fig.9 Topological analysis of metabolic pathways with significant enrichment of different metabolites in the samples at different fermentation stages under benzo(α)pyrene stress
[1] |
Peluzio MDCG, Dias MME, Martinez JA, et al. Kefir and intestinal microbiota modulation:implications in human health[J]. Front Nutr, 2021, 8:638740.
doi: 10.3389/fnut.2021.638740 URL |
[2] | 袁勇军, 黄丽金, 陈伟. 发酵乳饮料——开菲尔的研究进展[J]. 安徽农业科学, 2009, 37(23):11154-11156. |
Yuan YJ, Huang LJ, Chen W. Research advance on fermented milk beverage kefir[J]. J Anhui Agric Sci, 2009, 37(23):11154-11156. | |
[3] | 马龙, 邢军, 李安, 等. 开菲尔不同发酵时期微生物群落结构的变化[J]. 现代食品科技, 2019, 35(8):27-34, 26. |
Ma L, Xing J, Li A, et al. Evolution of microbial community structure in different fermentation periods in kefir[J]. Mod Food Sci Technol, 2019, 35(8):27-34, 26. | |
[4] | 林碧敏, 葛春玉, 曾满枝, 等. 开菲尔的生物学特性与活性功能研究进展[J]. 安徽农业科学, 2016, 44(3):102-105. |
Lin BM, Ge CY, Zeng MZ, et al. Research advances on kefir’s biological characteristics and activities[J]. J Anhui Agric Sci, 2016, 44(3):102-105. | |
[5] | 阳大海, 陈卫红, 沈伟达, 等. 开菲尔粒中优势菌的筛选及鉴定[J]. 安徽农业科学, 2010, 38(6):3146-3148, 3240. |
Yang DH, Chen WH, Shen WD, et al. Isolation and identification of preponderant flora from kefir grians[J]. J Anhui Agric Sci, 2010, 38(6):3146-3148, 3240. | |
[6] |
Talib, Mohamad, Yeap, et al. Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia[J]. Molecules, 2019, 24(14):2606.
doi: 10.3390/molecules24142606 URL |
[7] |
Tung YT, Chen HL, Wu HS, et al. Kefir peptides prevent hyperlipidemia and obesity in high-fat-diet-induced obese rats via lipid metabolism modulation[J]. Mol Nutr Food Res, 2018, 62(3):1700505.
doi: 10.1002/mnfr.201700505 URL |
[8] | 姜志辉, 何羡霞. 开菲尔菌粒及其发酵乳的研究进展[J]. 肠外与肠内营养, 2018, 25(4):252-256. |
Jiang ZH, He XX. Research advances in kefir grain and its fermented milk product[J]. Parenter Enter Nutr, 2018, 25(4):252-256. | |
[9] | 何雪畅, 张爽, 臧鹏雯, 等. 开菲尔菌群的益生功效及其在发酵食品中的应用进展[J]. 食品工业, 2016, 37(10):220-223. |
He XC, Zhang S, Zang PW, et al. The probiotic function of kefir and its application progress in fermented food[J]. Food Ind, 2016, 37(10):220-223. | |
[10] | 高鑫, 梅俊, 李博. 开菲尔产品微生态、成分和功能活性的研究进展[J]. 食品与发酵工业, 2016, 42(3):243-250. |
Gao X, Mei J, Li B. Research on microbial diversities, chemical composition and functional activities of kefir grains and their fermented products[J]. Food Ferment Ind, 2016, 42(3):243-250. | |
[11] | 阳大海, 陈卫红, 沈伟达, 等. 开菲尔粒中优势菌的筛选及鉴定[J]. 安徽农业科学, 2010, 38(6):3146-3148, 3240. |
Yang DH, Chen WH, Shen WD, et al. Isolation and identification of preponderant flora from kefir grians[J]. J Anhui Agric Sci, 2010, 38(6):3146-3148, 3240. | |
[12] | 孙玉凤, 张晶, 范蓓, 等. 食品有毒有害物质分析研究[J]. 食品安全质量检测学报, 2016, 7(3):1220-1225. |
Sun YF, Zhang J, Fan B, et al. Analysis on toxic and harmful substances in food[J]. J Food Saf Qual, 2016, 7(3):1220-1225. | |
[13] | 孙长颢. 营养与食品卫生学[M]. 第8版 北京: 人民卫生出版社, 2018. |
Sun CH. Nutrition and food hygiene[M]. 8th ed, Beijing: People’s Health Publishing House, 2018. | |
[14] |
Murkovic M. Analysis of heterocyclic aromatic amines[J]. Anal Bioanal Chem, 2007, 389(1):139-146.
pmid: 17546447 |
[15] | 申松梅, 曹先仲, 宋艳辉, 等. 多环芳烃的性质及其危害[J]. 贵州化工, 2008, 33(3):61-63. |
Shen SM, Cao XZ, Song YH, et al. The nature and the impact of PAHs[J]. Guizhou Chem Ind, 2008, 33(3):61-63. | |
[16] | Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants:an overview[J]. Biotechnol Res Int, 2011, 2011:941810. |
[17] |
Harayama S. Polycyclic aromatic hydrocarbon bioremediation design[J]. Curr Opin Biotechnol, 1997, 8(3):268-273.
doi: 10.1016/S0958-1669(97)80002-X URL |
[18] |
Seo JS, Keum YS, Li QX. Bacterial degradation of aromatic compounds[J]. Int J Environ Res Public Health, 2009, 6(1):278-309.
doi: 10.3390/ijerph6010278 URL |
[19] |
Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons(PAHs):a review[J]. J Hazard Mater, 2009, 169(1/2/3):1-15.
doi: 10.1016/j.jhazmat.2009.03.137 URL |
[20] |
Zhao HF, Zhou F, Qi YQ, et al. Screening of Lactobacillus strains for their ability to bind Benzo(a)Pyrene and the mechanism of the process[J]. Food Chem Toxicol, 2013, 59:67-71.
doi: 10.1016/j.fct.2013.05.040 URL |
[21] | He XL, Zhao LL, Zhang BL, et al. Removal of benzo(a)Pyrene by Lactobacillus strains under simulated starch conditions[J]. Acta Microbiol Sin, 2016, 56(5):814-823. |
[22] | 王进, 张晶晶, 李晓晨, 等. 四种典型新疆奶疙瘩细菌多样性与气味特征探究[J]. 食品与发酵工业, 2021, 47(20):285-290. |
Wang J, Zhang JJ, Li XC, et al. Bacterial diversity and odor characteristics of four typical cheeses in Xinjiang[J]. Food Ferment Ind, 2021, 47(20):285-290. | |
[23] | 古丽加马力·艾萨, 邢军, 马龙, 等. 开菲尔发酵过程中风味物质动态变化[J]. 食品与发酵工业, 2020, 46(12):173-178. |
Guljamal A, Xing J, Ma L, et al. Dynamic changes of flavor substances during Kefir fermentation[J]. Food Ferment Ind, 2020, 46(12):173-178. | |
[24] | 马龙, 邢军, 李安, 等. 开菲尔粒发酵过程酵母菌多样性和动态规律[J]. 中国乳品工业, 2019, 47(9):24-28. |
Ma L, Xing J, Li A, et al. Yeast diversity and dynamics during the fermentation of Kefir[J]. China Dairy Ind, 2019, 47(9):24-28. | |
[25] | 胡明珍, 刘慧燕, 潘琳, 基于非靶向代谢组学分析副干酪乳杆菌发酵枸杞汁各阶段代谢差异[J]. 食品科学, 2021. https://kns.cnki.net/kcms/detail/11.2206.TS.20210618.1737.058.html. |
Hu MZ, Liu HY, Pan L, et al. Analysis of metabolic differences of goji juice fermented by Lactobacillus paracasei based on non-targeted metabonomics[J]. Food Science, 2021. https://kns.cnki.net/kcms/detail/11.2206.TS.20210618.1737.058.html. | |
[26] | 王彤, 刘慧燕, 潘琳, 等. 嗜酸乳杆菌发酵枣汁的非靶向代谢组学研究[J]. 中国酿造, 2021, 40(8):174-179. |
Wang T, Liu HY, Pan L, et al. Non-targeted metabolomics of fermented jujube juice by Lactobacillus acidophilus[J]. China Brew, 2021, 40(8):174-179. | |
[27] | 姜岩, 杨颖, 张贤明. 典型多环芳烃生物降解及转化机制的研究进展[J]. 石油学报:石油加工, 2014, 30(6):1137-1150. |
Jiang Y, Yang Y, Zhang XM. Review on the biodegradation and conversion mechanisms of typical polycyclic aromatic hydrocarbons[J]. Acta Petrolei Sin:Petroleum Process Sect, 2014, 30(6):1137-1150. | |
[28] | 马静. 多环芳烃降解菌的筛选、降解机理及降解性能研究[D]. 大连: 大连理工大学, 2013. |
Ma J. Isolation of PAHs-degrading bacteria and characterization of the degradation metabolism[D]. Dalian: Dalian University of Technology, 2013. | |
[29] | 武风霞. 菲降解菌的分离鉴定及降解效果研究[D]. 西安: 西北大学, 2006. |
Wu FX. Isolation and identification of phenanthrene degradation bacteria and research on degradation effect[D]. Xi’an: Northwestern University, 2006. | |
[30] |
Bouchez M, Blanchet D, Vandecasteele JP. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations:inhibition phenomena and cometabolism[J]. Appl Microbiol Biotechnol, 1995, 43(1):156-164.
pmid: 7766129 |
[31] | 崔赫. 一株多环芳烃降解菌的筛选、鉴定及其降解特性研究[D]. 长春: 吉林农业大学, 2013. |
Cui H. Strain of polycyclic aromatic hydrocarbons degradation bacteria screening, identification and its degradation characteristics of the study[D]. Changchun: Jilin Agricultural University, 2013. | |
[32] |
Bhatt KK, Lily MK, Joshi G, et al. Benzo(a)Pyrene degradation pathway in Bacillus subtilis BMT4i(MTCC 9447)[J]. Turkish J Biochem, 2018, 43(6):693-701.
doi: 10.1515/tjb-2017-0334 URL |
[33] |
Li F, Zhu LZ, Zhang D. Effect of surfactant on phenanthrene metabolic kinetics by Citrobacter sp. SA01[J]. J Environ Sci, 2014, 26(11):2298-2306.
doi: 10.1016/j.jes.2014.09.015 URL |
[34] |
Huang X, Shi J, Cui C, et al. Biodegradation of phenanthrene by Rhizobium petrolearium-1[J]. J Appl Microbiol, 2016, 121(6):1616-1626.
doi: 10.1111/jam.13292 pmid: 27614183 |
[35] |
Cui CZ, Ma L, Shi J, et al. Metabolic pathway for degradation of anthracene by halophilic Martelella sp. AD-3[J]. Int Biodeterior Biodegrad, 2014, 89:67-73.
doi: 10.1016/j.ibiod.2014.01.012 URL |
[36] |
Gao SM, Seo JS, Wang J, et al. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6[J]. Int Biodeterior Biodegradation, 2013, 79:98-104.
doi: 10.1016/j.ibiod.2013.01.012 URL |
[37] |
Feng TC, Cui CZ, Dong F, et al. Phenanthrene biodegradation by halophilic Martelella sp. AD-3[J]. J Appl Microbiol, 2012, 113(4):779-789.
doi: 10.1111/j.1365-2672.2012.05386.x pmid: 22762374 |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[3] | 潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307. |
[4] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[5] | 马青云, 江旭, 李情情, 宋金龙, 周义清, 阮志勇. 烟嘧磺隆降解菌Chryseobacterium sp. LAM-M5的分离、鉴定及其降解机理研究[J]. 生物技术通报, 2022, 38(2): 113-122. |
[6] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[7] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[8] | 吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318. |
[9] | 张凤, 陈伟. 代谢组学在植物逆境生物学中的研究进展[J]. 生物技术通报, 2021, 37(8): 1-11. |
[10] | 陈倩, 张露源, 陈伯昌, 吴海燕. 大豆孢囊线虫生防菌株Myrothecium verrucaria ZW-2发酵条件优化及活性物质分析[J]. 生物技术通报, 2021, 37(7): 127-136. |
[11] | 田鹤, 税光厚. 基于质谱技术的代谢组学分析方法研究进展[J]. 生物技术通报, 2021, 37(1): 24-32. |
[12] | 殷志斌, 黄文洁, 伍欣宙, 晏石娟. 空间分辨代谢组学进展和挑战[J]. 生物技术通报, 2021, 37(1): 32-51. |
[13] | 黄小丹, 陈梦雨, 黄文洁, 张名位, 晏石娟. 基于代谢组学的植物多酚及其肠道健康效应研究进展[J]. 生物技术通报, 2021, 37(1): 123-136. |
[14] | 岳丽晓, 李登云, 张晶晶, 仝雷. 一株敌草隆降解菌的分离及其应用潜能探索[J]. 生物技术通报, 2020, 36(6): 110-119. |
[15] | 李锐, 孙祖莉, 杨贤庆, 李来好, 魏涯, 岑剑伟, 王晶, 赵永强. 代谢组学在水产品品质与安全中的研究进展[J]. 生物技术通报, 2020, 36(11): 155-163. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||