生物技术通报 ›› 2023, Vol. 39 ›› Issue (9): 156-167.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0284
收稿日期:
2023-03-29
出版日期:
2023-09-26
发布日期:
2023-10-24
通讯作者:
张薇,女,博士,教授,研究方向:棉花分子育种;E-mail: zhw_agr@shzu.edu.cn作者简介:
娄慧,女,硕士,研究方向:棉花分子育种; E-mail: 2930304170@qq.com
基金资助:
LOU Hui(), ZHU Jin-cheng, YANG Yang, ZHANG Wei()
Received:
2023-03-29
Published:
2023-09-26
Online:
2023-10-24
摘要:
为探究抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响,以棉花感病品种新海14号(XH-14)和抗病品种新海41号(XH-41)为材料,将棉花根系分泌物与尖孢镰刀菌(F327)共培养,观察尖孢镰刀菌的生长;取培养0、6、12、24和48 h样本,进行RNA-seq。结果表明,与XH-41根系分泌物处理的菌落相比,XH-14根系分泌物处理的菌落生长速率快、孢子萌发率高、产孢量显著增加。GO(gene ontology)分析发现,XH-14根系分泌物处理的差异表达基因(differentialy expressed genes, DEGs)主要富集在氨基酸转运、脂肪酸生物合成过程、膜的组成部分、离子通道活性;XH-41根系分泌物处理的DEGs主要富集在跨膜转运、三羧酸循环、膜的组成部分、ATP酶活性。KEGG(Kyoto encyclopedia of genes and genomes)分析发现,XH-14根系分泌物处理的DEGs主要富集在TCA循环、类胡萝卜素生物合成、谷胱甘肽代谢、核黄素代谢等代谢通路;XH-41根系分泌物处理的主要DEGs富集在碳代谢、其他聚糖降解、脂肪酸代谢、ABC运输工具等代谢通路。综合分析结果,获得24个与细胞壁降解酶相关的基因,其中感病品种棉花根系分泌物处理6 h下“水解酶活性、水解O-糖基化合物”基因富集数目最多。研究结果为筛选棉花枯萎病菌潜在的关键致病基因奠定基础,为棉花枯萎病的防控提供理论依据。
娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167.
LOU Hui, ZHU Jin-cheng, YANG Yang, ZHANG Wei. Effects of Root Exudates in Resistant and Susceptible Varieties of Cotton on the Growths and Gene Expressions of Fusarium oxysporum[J]. Biotechnology Bulletin, 2023, 39(9): 156-167.
基因名称 Gene name | 引物序列Primer sequence(5'-3') |
---|---|
FOTG_00376 | TGCAGCCCTCATCCTTGC(F) |
ACAGCGCGGATGGTATCG(R) | |
FOTG_00798 | AGCTGCAATCCCACGCTT(F) |
AAAAGCAAAGGCAGCGGC(R) | |
FOTG_00997 | CCAGCGAGTTCTCGACCC(F) |
CAGAGAAGGGCCGCCAAA(R) | |
FOTG_01540 | TCTCCAGGGGCCAGTGTT(F) |
ACTTTGGCCCGATCGCAA(R) | |
FOTG_02351 | CTTCCCAGGCGTGGCTTT(F) |
GTCAAACAGGGCGAGCCT(R) | |
FOTG_05128 | GCCTCATCACCACCCGTC(F) |
GCGAGACCAGGTGACCAC(R) | |
FOTG_05209 | AAGACCGGTGCTTCTGCC(F) |
TGGAGGCGGAGAAGACGA(R) | |
FOTG_06306 | TCAGCCCTGCCGATGTTG(F) |
GTCGAGACCGAGCAGCTC(R) | |
FOTG_07131 | TGGCTCCAAGCTCTGTGC(F) |
CTGAGTTTCCGTGGCCGT(R) | |
FOTG_08398 | TGCTTGGTATGGGCGGTG(F) |
CAGTGCCCAGCTTTCGGA(R) | |
FOTG_16221 | CCCCAGGAGGCCTCAGAT(F) |
AGCTCCCGCAAACCTGAC(R) | |
FOTG_18094 | ACCACCATCCGCAACCTG(F) |
AGGTCCCGTTCGTTGCTG(R) |
表1 引物序列
Table 1 Primer sequences
基因名称 Gene name | 引物序列Primer sequence(5'-3') |
---|---|
FOTG_00376 | TGCAGCCCTCATCCTTGC(F) |
ACAGCGCGGATGGTATCG(R) | |
FOTG_00798 | AGCTGCAATCCCACGCTT(F) |
AAAAGCAAAGGCAGCGGC(R) | |
FOTG_00997 | CCAGCGAGTTCTCGACCC(F) |
CAGAGAAGGGCCGCCAAA(R) | |
FOTG_01540 | TCTCCAGGGGCCAGTGTT(F) |
ACTTTGGCCCGATCGCAA(R) | |
FOTG_02351 | CTTCCCAGGCGTGGCTTT(F) |
GTCAAACAGGGCGAGCCT(R) | |
FOTG_05128 | GCCTCATCACCACCCGTC(F) |
GCGAGACCAGGTGACCAC(R) | |
FOTG_05209 | AAGACCGGTGCTTCTGCC(F) |
TGGAGGCGGAGAAGACGA(R) | |
FOTG_06306 | TCAGCCCTGCCGATGTTG(F) |
GTCGAGACCGAGCAGCTC(R) | |
FOTG_07131 | TGGCTCCAAGCTCTGTGC(F) |
CTGAGTTTCCGTGGCCGT(R) | |
FOTG_08398 | TGCTTGGTATGGGCGGTG(F) |
CAGTGCCCAGCTTTCGGA(R) | |
FOTG_16221 | CCCCAGGAGGCCTCAGAT(F) |
AGCTCCCGCAAACCTGAC(R) | |
FOTG_18094 | ACCACCATCCGCAACCTG(F) |
AGGTCCCGTTCGTTGCTG(R) |
图1 根系分泌物对尖孢镰刀菌生长的影响 A:根系分泌物对孢子萌发的影响;B:根系分泌物对尖孢镰刀菌生物量的影响;C、D:根系分泌物对菌落直径的影响。不同字母表示差异显著P<0.05,下同
Fig. 1 Effects of root exudates on the growth of Fusarium oxysporum A: Effects of root exudates on spore germination. B: Effects of root exudates on F. oxysporum biomass. C and D: Effect of root exudates on bacterial colony diameter. Different letters indicate significant difference P <0.05, the same below
样品名称Sample ID | 质控数据Clean reads | 原始数据Raw reads | GC/% | Q20/% | Q30/% | 参考基因组比对Mapped reads |
---|---|---|---|---|---|---|
F0a | 23 634 226 | 7 078 961 596 | 52.96 | 98.65 | 95.81 | 44 807 027(94.79%) |
F0b | 24 801 113 | 7 426 874 552 | 52.97 | 98.43 | 95.31 | 46 773 111(94.30%) |
G12a | 19 061 986 | 5 703 668 454 | 52.30 | 97.12 | 92.43 | 33 826 843(88.73%) |
G12b | 22 878 897 | 6 847 717 368 | 52.37 | 98.49 | 95.48 | 41 697 513(91.13%) |
G24a | 23 252 280 | 6 960 709 832 | 52.42 | 98.34 | 95.12 | 42 523 192(91.44%) |
G24b | 19 547 876 | 5 853 299 798 | 52.40 | 97.09 | 92.38 | 35 197 149(90.03%) |
G48a | 28 294 193 | 8 474 124 618 | 52.58 | 98.22 | 94.77 | 51 256 558(90.58%) |
G48b | 23 044 105 | 6 899 543 008 | 52.51 | 97.29 | 92.79 | 41 817 664(90.73%) |
G6a | 25 066 610 | 7 505 211 560 | 52.68 | 98.33 | 95.05 | 45 107 683(89.98%) |
G6b | 22 483 818 | 6 732 866 920 | 52.70 | 98.51 | 95.51 | 40 929 019(91.02%) |
K12a | 20 781 035 | 6 222 244 284 | 52.26 | 96.85 | 91.94 | 37 148 780(89.38%) |
K12b | 20 396 915 | 6 107 771 748 | 52.20 | 97.50 | 93.22 | 36 813 504(90.24%) |
K24a | 22 395 810 | 6 701 578 958 | 52.30 | 97.46 | 93.20 | 39 332 014(87.81%) |
K24b | 19 324 066 | 5 781 190 570 | 52.20 | 97.49 | 93.24 | 33 512 754(86.71%) |
K48a | 20 253 195 | 6 063 580 670 | 52.59 | 97.32 | 92.80 | 37 310 755(92.11%) |
K48b | 23 431 421 | 7 015 769 462 | 52.54 | 98.63 | 95.77 | 42 942 424(91.63%) |
K6a | 19 328 402 | 5 788 003 554 | 52.75 | 97.24 | 92.64 | 34 813 490(90.06%) |
K6b | 20 460 546 | 6 123 145 102 | 52.66 | 97.52 | 93.25 | 36 420 714(89.00%) |
W12a | 20 317 585 | 6 085 191 946 | 52.29 | 98.25 | 94.84 | 37 516 540(92.33%) |
W12b | 23 399 026 | 7 007 306 032 | 52.23 | 98.25 | 94.86 | 42 862 234(91.59%) |
W24a | 22 727 561 | 6 805 789 076 | 52.39 | 98.09 | 94.46 | 42 220 799(92.88%) |
W24b | 21 749 990 | 6 509 670 558 | 52.28 | 98.27 | 94.83 | 40 299 468(92.64%) |
W48a | 26 212 102 | 7 848 652 478 | 52.73 | 98.42 | 95.30 | 49 390 772(94.21%) |
W48b | 25 173 938 | 7 534 704 604 | 52.75 | 97.93 | 94.12 | 47 156 136(93.66%) |
W6a | 22 480 503 | 6 733 786 866 | 52.67 | 98.44 | 95.33 | 41 135 869(91.49%) |
W6b | 26 838 538 | 8 034 600 906 | 52.81 | 98.48 | 95.43 | 49 740 879(92.67%) |
表2 测序数据评估统计表
Table 2 Evaluation statistics of sequencing data
样品名称Sample ID | 质控数据Clean reads | 原始数据Raw reads | GC/% | Q20/% | Q30/% | 参考基因组比对Mapped reads |
---|---|---|---|---|---|---|
F0a | 23 634 226 | 7 078 961 596 | 52.96 | 98.65 | 95.81 | 44 807 027(94.79%) |
F0b | 24 801 113 | 7 426 874 552 | 52.97 | 98.43 | 95.31 | 46 773 111(94.30%) |
G12a | 19 061 986 | 5 703 668 454 | 52.30 | 97.12 | 92.43 | 33 826 843(88.73%) |
G12b | 22 878 897 | 6 847 717 368 | 52.37 | 98.49 | 95.48 | 41 697 513(91.13%) |
G24a | 23 252 280 | 6 960 709 832 | 52.42 | 98.34 | 95.12 | 42 523 192(91.44%) |
G24b | 19 547 876 | 5 853 299 798 | 52.40 | 97.09 | 92.38 | 35 197 149(90.03%) |
G48a | 28 294 193 | 8 474 124 618 | 52.58 | 98.22 | 94.77 | 51 256 558(90.58%) |
G48b | 23 044 105 | 6 899 543 008 | 52.51 | 97.29 | 92.79 | 41 817 664(90.73%) |
G6a | 25 066 610 | 7 505 211 560 | 52.68 | 98.33 | 95.05 | 45 107 683(89.98%) |
G6b | 22 483 818 | 6 732 866 920 | 52.70 | 98.51 | 95.51 | 40 929 019(91.02%) |
K12a | 20 781 035 | 6 222 244 284 | 52.26 | 96.85 | 91.94 | 37 148 780(89.38%) |
K12b | 20 396 915 | 6 107 771 748 | 52.20 | 97.50 | 93.22 | 36 813 504(90.24%) |
K24a | 22 395 810 | 6 701 578 958 | 52.30 | 97.46 | 93.20 | 39 332 014(87.81%) |
K24b | 19 324 066 | 5 781 190 570 | 52.20 | 97.49 | 93.24 | 33 512 754(86.71%) |
K48a | 20 253 195 | 6 063 580 670 | 52.59 | 97.32 | 92.80 | 37 310 755(92.11%) |
K48b | 23 431 421 | 7 015 769 462 | 52.54 | 98.63 | 95.77 | 42 942 424(91.63%) |
K6a | 19 328 402 | 5 788 003 554 | 52.75 | 97.24 | 92.64 | 34 813 490(90.06%) |
K6b | 20 460 546 | 6 123 145 102 | 52.66 | 97.52 | 93.25 | 36 420 714(89.00%) |
W12a | 20 317 585 | 6 085 191 946 | 52.29 | 98.25 | 94.84 | 37 516 540(92.33%) |
W12b | 23 399 026 | 7 007 306 032 | 52.23 | 98.25 | 94.86 | 42 862 234(91.59%) |
W24a | 22 727 561 | 6 805 789 076 | 52.39 | 98.09 | 94.46 | 42 220 799(92.88%) |
W24b | 21 749 990 | 6 509 670 558 | 52.28 | 98.27 | 94.83 | 40 299 468(92.64%) |
W48a | 26 212 102 | 7 848 652 478 | 52.73 | 98.42 | 95.30 | 49 390 772(94.21%) |
W48b | 25 173 938 | 7 534 704 604 | 52.75 | 97.93 | 94.12 | 47 156 136(93.66%) |
W6a | 22 480 503 | 6 733 786 866 | 52.67 | 98.44 | 95.33 | 41 135 869(91.49%) |
W6b | 26 838 538 | 8 034 600 906 | 52.81 | 98.48 | 95.43 | 49 740 879(92.67%) |
图4 尖孢镰刀菌的差异表达基因 A:G vs W 的6、12、24、48 h DEGs韦恩图;B:K vs W的 6、12、24、48 h DEGs韦恩图;C :(G vs W)vs(K vs W)的DEGs韦恩图;D:G vs W和K vs W 的6、12、24、48 h 上、下调DEGs
Fig. 4 Differentially expressed genes of F. oxysporum A: Venn diagram of G vs W 6, 12, 24 and 48 h DEGs. B: Venn diagram of G vs W 6, 12, 24 and 48 h DEGs. C: Venn diagram of (G vs W)vs(K vs W). D: K vs W and G vs W 6, 12, 24 and 48 h up and down DEGs
[1] |
朱金成, 杨洋, 娄慧, 等. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0419 |
Zhu JC, Yang Y, Lou H, et al. Regulation of fusarium wilt resistance in cotton by exogenous melatonin[J]. Biotechnol Bull, 2023, 39(1): 243-252. | |
[2] |
Zhu Y, Elkins-Arce H, Wheeler TA, et al. Effect of growth stage, cultivar, and root wounding on disease development in cotton caused by Fusarium wilt race 4(Fusarium oxysporum f.sp. vasinfec-tum)[J]. Crop Sci, 2023, 63(1): 101-114.
doi: 10.1002/csc2.v63.1 URL |
[3] | 王泽华, 方香玲. 尖孢镰刀菌遗传多样性研究进展[J]. 中国草地学报, 2021, 43(5): 106-114. |
Wang ZH, Fang XL. The research on genetic diversity of Fusarium oxysporum[J]. Chin J Grassland, 2021, 43(5): 106-114. | |
[4] |
Jia RF, Kang LR, Addrah ME, et al. Potato wilt caused by co-infection of Fusarium spp. and Verticillium dahliae in potato plants[J]. Eur J Plant Pathol, 2023, 165(2): 305-315.
doi: 10.1007/s10658-022-02607-6 |
[5] |
Yang LH, Zhou Y, Guo LJ, et al. The effect of banana rhizosphere chemotaxis and chemoattractants on Bacillus velezensis LG14-3 root colonization and suppression of banana Fusarium wilt disease[J]. Sustainability, 2022, 15(1): 351.
doi: 10.3390/su15010351 URL |
[6] |
Li CX, Fu XP, Zhou XG, et al. Treatment with wheat root exudates and soil microorganisms from wheat/watermelon companion cropping can induce watermelon disease resistance against Fusarium ox-ysporum f. sp. niveum[J]. Plant Dis, 2019, 103(7): 1693-1702.
doi: 10.1094/PDIS-08-18-1387-RE URL |
[7] |
Gai XT, Li S, Jiang N, et al. Comparative transcriptome analysis reveals that ATP synthases regulate Fusarium oxysporum virulence by modulating sugar transporter gene expressions in tobacco[J]. Front Plant Sci, 2022, 13: 978951.
doi: 10.3389/fpls.2022.978951 URL |
[8] |
Cai HS, Yu N, Liu YY, et al. Meta-analysis of fungal plant pathogen Fusarium oxysporum infection-related gene profiles using transcriptome datasets[J]. Front Microbiol, 2022, 13: 970477.
doi: 10.3389/fmicb.2022.970477 URL |
[9] |
Lu YX, Dong X, Huang XZ, et al. Combined analysis of the transcriptome and proteome of Eucommia ulmoides Oliv.(Duzhong)in response to Fusarium oxysporum[J]. Front Chem, 2022, 10: 1053227.
doi: 10.3389/fchem.2022.1053227 URL |
[10] |
Sun YQ, Yang HH, Li JF. Transcriptome analysis reveals the response mechanism of frl-mediated resistance to Fusarium ox-ysporum f. sp. radicis-lycopersici(FORL)infection in tomato[J]. Int J Mol Sci, 2022, 23(13): 7078.
doi: 10.3390/ijms23137078 URL |
[11] |
Luo Z, Yang XS, Li J, et al. Divergent effects of fertilizer regimes on taxonomic and functional compositions of rhizosphere bacteria and fungi in Phoebe bournei young plantations are associated with root exudates[J]. Forests, 2023, 14(1): 126.
doi: 10.3390/f14010126 URL |
[12] |
Xu YJ, Chen Z, Li XY, et al. Mycorrhizal fungi alter root exudation to cultivate a beneficial microbiome for plant growth[J]. Funct Ecol, 2023, 37(3): 664-675.
doi: 10.1111/fec.v37.3 URL |
[13] | 任改弟, 王光飞, 马艳. 根系分泌物与土传病害的关系研究进展[J]. 土壤, 2021, 53(2): 229-235. |
Ren GD, Wang GF, Ma Y. Research progresses on relationship between plant root exudates and soil-borne diseases[J]. Soils, 2021, 53(2): 229-235. | |
[14] |
Liang S, Wang YH, Zhang H, et al. Response of root-exuded organic acids in irrigated rice to different water management practices[J]. Eurasian Soil Sci, 2020, 53(11): 1572-1578.
doi: 10.1134/S1064229320110101 |
[15] |
Chen SC, Ren JJ, Zhao HJ, et al. Trichoderma harzianum improves defense against Fusarium oxysporum by regulating ROS and RNS metabolism, redox balance, and energy flow in cucumber roots[J]. Phytopathology, 2019, 109(6): 972-982.
doi: 10.1094/PHYTO-09-18-0342-R URL |
[16] |
Lyu JX, Dong Y, Dong K, et al. Intercropping with wheat suppressed Fusarium wilt in faba bean and modulated the composition of root exudates[J]. Plant Soil, 2020, 448(1/2): 153-164.
doi: 10.1007/s11104-019-04413-2 |
[17] |
Yun TY, Jing T, Zhou DB, et al. Potential biological control of endophytic Streptomyces sp. 5-4 against Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense tropical race 4[J]. Phytopathology, 2022, 112(9): 1877-1885.
doi: 10.1094/PHYTO-112-1-0005 URL |
[18] |
Yang TT, Liu JJ, Li XM, et al. Transcriptomic analysis of Fusarium oxysporum stress-induced pathosystem and screening of fom-2 interaction factors in contrasted melon plants[J]. Front Plant Sci, 2022, 13: 961586.
doi: 10.3389/fpls.2022.961586 URL |
[19] |
Formela-Luboińska M, Remlein-Starosta D, Waśkiewicz A, et al. The role of saccharides in the mechanisms of pathogenicity of Fusarium oxysporum f. sp. lupini in yellow lupine(Lupinus luteus L.)[J]. Int J Mol Sci, 2020, 21(19): 7258.
doi: 10.3390/ijms21197258 URL |
[20] |
Li S, Hai J, Wang ZE, et al. Lilium regale Wilson WRKY2 regulates chitinase gene expression during the response to the root rot pathogen Fusarium oxysporum[J]. Front Plant Sci, 2021, 12: 741463.
doi: 10.3389/fpls.2021.741463 URL |
[21] |
徐丽娇, 郝志鹏, 谢伟, 等. 丛枝菌根真菌根外菌丝跨膜H+和Ca2+流对干旱胁迫的响应[J]. 植物生态学报, 2018, 42(7): 764-773.
doi: 10.17521/cjpe.2018.0089 |
Xu LJ, Hao ZP, Xie W, et al. Transmembrane H+ and Ca2+ fluxes through extraradical hyphae of arbuscular mycorrhizal fungi in response to drought stress[J]. Chin J Plant Ecol, 2018, 42(7): 764-773.
doi: 10.17521/cjpe.2018.0089 URL |
|
[22] |
Berrin JG, Bissaro B. The maize pathogen Ustilago maydis secretes glycoside hydrolases and carbohydrate oxidases directed toward components of the fungal cell wall[J]. Appl Environ Microbiol, 2022, 88(23): e0158122.
doi: 10.1128/aem.01581-22 URL |
[23] | 侯杨威, 王鑫源, 杨林林, 等. 地黄轮纹病病原菌的细胞壁降解酶活性测定及致病性分析[J]. 北方园艺, 2022(19): 106-113. |
Hou YW, Wang XY, Yang LL, et al. Determination of cell wall-degrading enzyme activity and pathogenicity analysis of Rotunda pathogens[J]. North Hortic, 2022(19): 106-113. | |
[24] |
Bhaskar Rao T, Chopperla R, Prathi NB, et al. A comprehensive gene expression profile of pectin degradation enzymes reveals the molecular events during cell wall degradation and pathogenesis of rice sheath blight pathogen Rhizoctonia solani AG1-IA[J]. J Fungi, 2020, 6(2): 71.
doi: 10.3390/jof6020071 URL |
[25] |
Jeffress S, Arun-Chinnappa K, Stodart B, et al. Genome mining of the citrus pathogen Elsinoë fawcettii; prediction and prioritisation of candidate effectors, cell wall degrading enzymes and secondary metabolite gene clusters[J]. PLoS One, 2020, 15(5): e0227396.
doi: 10.1371/journal.pone.0227396 URL |
[26] |
Mandalà G, Ceoloni C, Busato I, et al. Transgene pyramiding in wheat: combination of deoxynivalenol detoxification with inhibition of cell wall degrading enzymes to contrast Fusarium Head Blight and Crown Rot[J]. Plant Sci, 2021, 313: 111059.
doi: 10.1016/j.plantsci.2021.111059 URL |
[27] |
Tini F, Beccari G, Benfield AH, et al. Role of the XylA gene, encoding a cell wall degrading enzyme, during common wheat, durum wheat and barley colonization by Fusarium graminearum[J]. Fungal Genet Biol, 2020, 136: 103318.
doi: 10.1016/j.fgb.2019.103318 URL |
[28] |
Escobar-Niño A, Morano Bermejo IM, Carrasco Reinado R, et al. Deciphering the dynamics of signaling cascades and virulence factors of B. cinerea during tomato cell wall degradation[J]. Microorganisms, 2021, 9(9): 1837.
doi: 10.3390/microorganisms9091837 URL |
[29] |
Wang D, Chen JY, Song J, et al. Cytotoxic function of xylanase VdXyn4 in the plant vascular wilt pathogen Verticillium dahli-ae[J]. Plant Physiol, 2021, 187(1): 409-429.
doi: 10.1093/plphys/kiab274 pmid: 34618145 |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 吴元明, 林佳怡, 柳雨汐, 李丹婷, 张宗琼, 郑晓明, 逄洪波. 基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J]. 生物技术通报, 2023, 39(8): 173-184. |
[3] | 付钰, 贾瑞瑞, 何荷, 王良桂, 杨秀莲. 两种砧木楸树嫁接苗生长差异及转录组比较分析[J]. 生物技术通报, 2023, 39(8): 251-261. |
[4] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[5] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[6] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[7] | 谢洋, 邢雨蒙, 周国彦, 刘美妍, 银珊珊, 闫立英. 黄瓜二倍体及其同源四倍体果实转录组分析[J]. 生物技术通报, 2023, 39(3): 152-162. |
[8] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[9] | 邓嘉辉, 雷建峰, 赵燚, 刘敏, 胡子曜, 尤扬子, 邵武奎, 柳建飞, 刘晓东. 基于Csy4与MCP的新型迷你基因组编辑系统的构建[J]. 生物技术通报, 2023, 39(10): 68-79. |
[10] | 朱金成, 杨洋, 娄慧, 张薇. 外源褪黑素调控棉花枯萎病抗性研究[J]. 生物技术通报, 2023, 39(1): 243-252. |
[11] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[12] | 李霁虹, 荆玉玲, 马桂珍, 郭荣君, 李世东. 无色杆菌77的基因组构成及其趋化和耐药特性[J]. 生物技术通报, 2022, 38(9): 136-146. |
[13] | 李秀青, 胡子曜, 雷建峰, 代培红, 刘超, 邓嘉辉, 刘敏, 孙玲, 刘晓东, 李月. 棉花黄萎病抗性相关基因GhTIFY9的克隆与功能分析[J]. 生物技术通报, 2022, 38(8): 127-134. |
[14] | 金姣姣, 刘自刚, 米文博, 徐明霞, 邹娅, 徐春梅, 赵彩霞. 利用RNA-Seq鉴定调控甘蓝型油菜叶片光合特性的低温胁迫应答基因[J]. 生物技术通报, 2022, 38(4): 126-142. |
[15] | 赵曾强, 郭文婷, 张析, 李潇玲, 张薇. 棉花抗枯萎病相关基因GhERF5-4D的克隆及功能分析[J]. 生物技术通报, 2022, 38(4): 193-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||