Biotechnology Bulletin ›› 2020, Vol. 36 ›› Issue (6): 230-235.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0028
Previous Articles Next Articles
ZHAO Xu1, XU Qun2, HOU Yan-ru1, LI Ming-yu1, ZHANG Ya-ning1, WANG Hai1
Received:
2020-01-07
Online:
2020-06-26
Published:
2020-06-28
ZHAO Xu, XU Qun, HOU Yan-ru, LI Ming-yu, ZHANG Ya-ning, WANG Hai. Effects of ANGPTL4 on Intestinal Microbiota Affecting Lipid Metabolism of Animals[J]. Biotechnology Bulletin, 2020, 36(6): 230-235.
[1] Ley RE, Bäckhed F, Turnbaugh P, et al.Obesity alters gut microbial ecology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(31):11070-11075. [2] Ley RE, Turnbaugh PJ, Klein S, et al.Microbial ecology:human gut microbes associated with obesity[J]. Nature, 2006, 444(7122):1022-1023. [3] Turnbaugh PJ, Ley RE, Mahowald MA, et al.An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122):1027-1031. [4] Guo X, Xia X, Tang R, et al.Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs[J]. Letters in Applied Microbiology, 2008, 47(5):367-373. [5] Guo X, Xia X, Tang R, et al.Real-time PCR quantification of the predominant bacterial divisions in the distal gut of Meishan and Landrace pigs[J]. Anaerobe, 2008, 14(4):224-228. [6] Angelakis E, Raoult D.The increase of Lactobacillus species in the gut flora of newborn broiler chicks and ducks is associated with weight gain[J]. PLoS One, 2010, 5(5):e10463. [7] Xu A, Lam MC, Chan KW, et al.Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(17):6086-6091. [8] Alex S, Lange K, Amolo T, et al.Short-chain fatty acids stimulate angiopoietin-like 4 synthesis in human colon adenocarcinoma cells by activating peroxisome proliferator-activated receptor γ[J]. Molecular and Cellular Biology, 2013, 33(7):1303-1316. [9] Bäckhed F, Ding H, Wang T, et al.The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(44):15718-15723. [10] 严鸿林. 肠道微生物及其与营养互作对猪骨骼肌表型及代谢的调控[D]. 成都:四川农业大学, 2018. [11] Zhao X, Guo Y, Guo S, et al.Effects of Clostridium butyricum and Enterococcus faecium on growth performance, lipid metabolism and cecal microbiota of broiler chickens[J]. Applied Microbiology and Biotechnology, 2013, 97(14):6477-6488. [12] Zhao X, Ding X, Yang Z, et al.Effects of Clostridium butyricum on growth performance, lipid metabolism and the caecal microecological environment of broilers[J]. European Poultry Science. DOI:10. 1399/eps. 2017, 187. [13] Yang X, Zhang B, Guo Y, et al.Effects of dietary lipids and Clostridium butyricum on fat deposition and meat quality of broiler chickens[J]. Poultry Science, 2010, 89(2):254-260. [14] Zhang B, Yang X, Guo Y, et al.Effects of dietary lipids and Clostridium butyricum on serum lipids and lipid-related gene expression in broiler chickens[J]. Animal, 2011, 5(12):1909-1915. [15] Grootaert C, Van de Wiele T, Van Roosbroeck I, et al. Bacterial monocultures, propionate, butyrate and H2O2 modulate the expression, secretion and structure of the fasting-induced adipose factor in gut epithelial cell lines[J]. Environmental Microbiology, 2011, 13(7):1778-1789. [16] 张丽萍. 不同品种猪肠道微生物与体脂、ANGPTL4基因关系的研究[D]. 成都:四川农业大学, 2007. [17] Aronsson L, Huang Y, Parini P, et al.Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein(ANGPTL4)[J]. PLoS One, 2010, 5(9):e13087. [18] Zhao X, Ding X, Yang Z, et al.Effects of Clostridium butyricum on breast muscle lipid metabolism of broilers[J]. Italian Journal of Animal Science, 2018, 17(4):1010-1020. [19] Zhao X, Guo Y, Liu H, et al.Clostridium butyricum reduce lipogenesis through bacterial wall components and butyrate[J]. Applied Microbiology and Biotechnology, 2014, 98(17):7549-7557. [20] Grootaert C, Van de Wiele T, Verstraete W, et al. Angiopoietin-like protein 4:health effects, modulating agents and structure-function relationships[J]. Expert Review of Proteomics, 2012, 9(2):181-199. [21] Lu B, Moser A, Shigenaga JK, et al.The acute phase response stimulates the expression of angiopoietin like protein 4[J]. Biochemical and Biophysical Research Communications, 2010, 391(4):1737-1741. [22] 郭亮. ANGPTL4在LPS诱导的急性肺损伤中的作用及机制研究[D]. 重庆:第三军医大学, 2015. [23] Korecka A, de Wouters T, Cultrone A, et al. ANGPTL4 expression induced by butyrate and rosiglitazone in human intestinal epithelial cells utilizes independent pathways[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2013, 304(11):G1025-1037. [24] Liu L, Zhuang X, Jiang M, et al.ANGPTL4 mediates the protective role of PPARγ activators in the pathogenesis of preeclampsia[J]. Cell Death & Disease, 2017, 8(9):e3054. [25] 段志轲. 2型糖尿病及其微血管并发症患者血清血管生成素样蛋白4水平及影响因素分析[D]. 福州:福建医科大学, 2017. [26] Greiner T, Bäckhed F.Effects of the gut microbiota on obesity and glucose homeostasis[J]. Trends in Endocrinology and Metabolism, 2011, 22(4):117-123. [27] Yoshida K, Shimizugawa T, Ono M, et al.Angiopoietin-like protein 4 is a potent hyperlipidemia-inducing factor in mice and inhibitor of lipoprotein lipase[J]. Journal of Lipid Research, 2002, 43(11):1770-1772. [28] Mandard S, Zandbergen F, van Straten E, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity[J]. The Journal of Biological Chemistry, 2006, 281(2):934-944. [29] Bäckhed F, Manchester J K, Semenkovich C F, et al.Mechanisms underlying the resistance to diet-induced obesity in germ-free mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(3):979-984. [30] Ge H, Yang G, Yu X, et al.Oligomerization state-dependent hyperlipidemic effect of angiopoietin-like protein 4[J]. Journal of Lipid Research, 2004, 45(11):2071-2079. [31] Köster A, Chao YB, Mosior M, et al.Transgenic angiopoietin-like(angptl)4 overexpression and targeted disruption of angptl4 and angptl3:Regulation of triglyceride metabolism[J]. Endocrinology, 2005, 146(11):4943-4950. [32] Lichtenstein L, Berbée JF, van Dijk SJ, et al. Angptl4 upregulates cholesterol synthesis in liver via inhibition of LPL- and HL-dependent hepatic cholesterol uptake[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27(11):2420-2427. [33] Singh AK, Aryal B, Chaube B, et al.Brown adipose tissue derived ANGPTL4 controls glucose and lipid metabolism and regulates thermogenesis[J]. Molecular Metabolism,2018,11:59-69. [34] 邹思湘. 动物生物化学[M]. 第5版. 北京:中国农业出版社,2013. |
[1] | WANG Song, JIAN Xiao-ping, PAN Wan-shu, ZHANG Yong-guang, WANG Tao, YOU Ling. Effects of Fermented Corn Xiaoqu Distiller's Grains Feed on the Intestinal Microbiota of Growing-Finishing Pigs [J]. Biotechnology Bulletin, 2022, 38(9): 248-257. |
[2] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[3] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[4] | JIN Qiu-xia, WANG Si-hong, JIN Li-hua. Research Progress on Drosophila Intestinal Stem Cells and Intestinal Microflora [J]. Biotechnology Bulletin, 2021, 37(4): 245-250. |
[5] | XIE Guo-zhen, TANG Yuan, WU Yi, HUANG Li-li, TAN Zhou-jin. Effects of Total Glycosides of Qiwei Baizhu Powder on Intestinal Microbiota and Enzyme Activities in Diarrhea Mice [J]. Biotechnology Bulletin, 2021, 37(12): 124-131. |
[6] | ZHANG Hao, ZHANG Ya-nan, LI Xin, WANG Jia-mei, WANG Yong, ZHU Jiang-jiang, XIONG Yan, LIN Ya-qiu. Effect of PDK4 on the Lipid Metabolism of Goat Intramuscular Adipocytes [J]. Biotechnology Bulletin, 2021, 37(12): 151-159. |
[7] | WANG Jing, DAI Dong, WU Shu-geng, ZHANG Hai-jun, QI Guang-hai. Advances in Successional Development and Early Establishment of the Chicken Intestinal Microbiota [J]. Biotechnology Bulletin, 2020, 36(2): 1-8. |
[8] | MING Peng-fei, HUANG Ying-ying, DONG Yan-li, NIE Xing-can, FENG Shi-bin, WANG Xi-chun, CHENG Jian-bo, LI Jin-chun, WU Jin-jie, LI Yu. Regulation of LKB1-AMPKα-SIRT1 Signal Pathway in Lipid Metabolism in the Adipose Tissue of Dairy Cows [J]. Biotechnology Bulletin, 2019, 35(2): 176-181. |
[9] | WANG Zhao-yang, LAN Li-ming, BAI Ding-ping, ZHANG Fu-jun, LI Ang. Research Advance on PPARα Gene in Livestock and Poultry [J]. Biotechnology Bulletin, 2018, 34(12): 32-40. |
[10] | LIU Xin-feng1, 2, DING Xiang-bin2, WANG Yi-min2, LI Xin2, GUO Hong2, LI Guang-peng1. Study of Plasma Differential Proteins in fat-1 Transgenic Cow [J]. Biotechnology Bulletin, 2016, 32(9): 203-209. |
[11] | Li Dongping, Guo Mingzhang, Xu Wentao. Advances and Applications on Methodology of 16S rRNA Sequencing in Gut Microbiota Analysis [J]. Biotechnology Bulletin, 2015, 31(2): 71-77. |
[12] | Li Jing, Huang Ying, Huang Limei, Yang Minghua, Li Qihua, Jia Junjing, Zhao Sumei. The Role of miR-143 in the Adipocyte Differentiation and Lipid Metabolism [J]. Biotechnology Bulletin, 2014, 0(9): 34-38. |
[13] | Du Xiuxiu, Fang Zhijia, Chen Zhongxiang, Kuang Xin, Huang Zhiwei. Rapid Quantitation and Dynamic Accumulation Analysis of Neutral Lipids in Yeast [J]. Biotechnology Bulletin, 2014, 0(8): 208-214. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 691
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 439
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||