Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (11): 184-191.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0328
Previous Articles Next Articles
YANG Chong1,2(), CHENG Sha-sha2, AI Chang-feng2, ZHAO Xuan2, LIU Meng-jun2()
Received:
2024-04-07
Online:
2024-11-26
Published:
2024-12-19
Contact:
LIU Meng-jun
E-mail:hbndyc@163.com;lmj1234567@aliyun.com
YANG Chong, CHENG Sha-sha, AI Chang-feng, ZHAO Xuan, LIU Meng-jun. Identification of ABF/AREB Gene Family and Their Expression Analysis in Jujube Fruit[J]. Biotechnology Bulletin, 2024, 40(11): 184-191.
基因名称Gene name | 基因编号 Gene ID | 编码氨基酸长度 Length of encoded amino acids/aa | 蛋白质分子量 Molecular weight of protein/kD | 等电点 pI | 染色体定位 Chromosome location | 亲水性GRAVY | 不稳定系数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
ZjABF1 | XP_048337122.1 | 436 | 46.24 | 9.85 | Chr.9 | -0.614 | 52.33 | 66.93 | nucl: 14 |
ZjABF2 | XP_060673229.1 | 470 | 50.76 | 7..75 | Chr.5 | -0.592 | 35.62 | 68.09 | nucl: 14 |
ZjABF3 | XP_015898748.2 | 438 | 48.07 | 8.47 | Chr.11 | -0.787 | 61.51 | 63.88 | nucl: 14 |
ZjABF4 | XP_015872556.3 | 474 | 52.64 | 8.82 | Chr.10 | -0.798 | 55.84 | 64.58 | chlo: 6, pero: 5, nucl: 2.5, cyto_nucl: 2 |
ZjABF5 | XP_048326228.1 | 321 | 35.58 | 8.5 | Chr.8 | -0.807 | 59.61 | 66.88 | nucl: 14 |
Table 1 Physicochemical properties of jujube ABF
基因名称Gene name | 基因编号 Gene ID | 编码氨基酸长度 Length of encoded amino acids/aa | 蛋白质分子量 Molecular weight of protein/kD | 等电点 pI | 染色体定位 Chromosome location | 亲水性GRAVY | 不稳定系数 Instability index | 脂肪族氨基酸指数 Aliphatic index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|---|---|---|
ZjABF1 | XP_048337122.1 | 436 | 46.24 | 9.85 | Chr.9 | -0.614 | 52.33 | 66.93 | nucl: 14 |
ZjABF2 | XP_060673229.1 | 470 | 50.76 | 7..75 | Chr.5 | -0.592 | 35.62 | 68.09 | nucl: 14 |
ZjABF3 | XP_015898748.2 | 438 | 48.07 | 8.47 | Chr.11 | -0.787 | 61.51 | 63.88 | nucl: 14 |
ZjABF4 | XP_015872556.3 | 474 | 52.64 | 8.82 | Chr.10 | -0.798 | 55.84 | 64.58 | chlo: 6, pero: 5, nucl: 2.5, cyto_nucl: 2 |
ZjABF5 | XP_048326228.1 | 321 | 35.58 | 8.5 | Chr.8 | -0.807 | 59.61 | 66.88 | nucl: 14 |
Fig. 5 Expression analysis of ABFs at different fruit development stages S1: Early stage of young fruit. S2: Middle stage of young fruit. S3: Pre hard core stage. S4: Hard core stage. S5: White ripening stage. S6: Late stage of white ripening. S7: Quarter coloring stage. S8: Half-red stage. S9: Full-red stage
Fig. 6 Interacting protein prediction of ABF in jujube A: The interacting protein prediction of ZjABF3. B: The interacting protein prediction of ZjABF4. C: The interacting protein prediction of ZjABF5
[1] | Liu MJ, Wang JR, Wang LL, et al. The historical and current research progress on jujube-a superfruit for the future[J]. Hortic Res, 2020, 7: 119. |
[2] | Romera-Branchat M, Severing E, Pocard C, et al. Functional divergence of the Arabidopsis florigen-interacting bZIP transcription factors FD and FDP[J]. Cell Rep, 2020, 31(9): 107717. |
[3] | Zou MJ, Guan YC, Ren HB, et al. A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance[J]. Plant Mol Biol, 2008, 66(6): 675-683. |
[4] | Collin A, Daszkowska-Golec A, Szarejko I. Updates on the role of abscisic acid insensitive 5(ABI5)and abscisic acid-responsive element binding factors(ABFs)in ABA signaling in different developmental stages in plants[J]. Cells, 2021, 10(8): 1996. |
[5] | Brocard IM, Lynch TJ, Finkelstein RR. Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response[J]. Plant Physiol, 2002, 129(4): 1533-1543. |
[6] | Xiang Y, Tang N, Du H, et al. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice[J]. Plant Physiol, 2008, 148(4): 1938-1952. |
[7] | 洪方蕾, 陆瑶, 俞世姣, 等. 桂花OfABFs基因克隆和表达分析[J]. 浙江农林大学学报, 2023, 40(3): 481-491. |
Hong FL, Lu Y, Yu SJ, et al. Cloning and expression analysis of OfABFs gene in Osmanthus fragrans[J]. J Zhejiang A F Univ, 2023, 40(3): 481-491. | |
[8] | Li FF, Mei FM, Zhang YF, et al. Genome-wide analysis of the AREB/ABF gene lineage in land plants and functional analysis of TaABF3 in Arabidopsis[J]. BMC Plant Biol, 2020, 20(1): 558. |
[9] | Liu TF, Zhou TT, Lian MT, et al. Genome-wide identification and characterization of the AREB/ABF/ABI5 subfamily members from Solanum tuberosum[J]. Int J Mol Sci, 2019, 20(2): 311. |
[10] | Yong X, Zheng TC, Zhuo XK, et al. Genome-wide identification, characterisation, and evolution of ABF/AREB subfamily in nine Rosaceae species and expression analysis in mei(Prunus mume)[J]. PeerJ, 2021, 9: e10785. |
[11] | 庞少萍, 董翠翠, 马岩岩, 等. CsAREB转录因子在柑橘果实发育中的作用[J]. 园艺学报, 2017, 44(3): 441-451. |
Pang SP, Dong CC, Ma YY, et al. The roles of two CsAREB transcription factors in the development of citrus fruit[J]. Acta Hortic Sin, 2017, 44(3): 441-451. | |
[12] | 杨玲. 烟草ABF转录因子基因的克隆及功能分析[D]. 重庆: 重庆大学, 2014. |
Yang L. Cloning and functional analysis of ABF transcription factor gene in Nicotiana tabacum[D]. Chongqing: Chongqing University, 2014. | |
[13] | 涂明星. 葡萄转录因子VlbZIP30抗旱功能及其调控机理研究[D]. 杨凌: 西北农林科技大学, 2021 |
Tu MX. Drought resistance function and regulation mechanism analysis of grapevine transcription factor VlbZIP30 gene[D]. Yangling: Northwest A&F University, 2021. | |
[14] | Yang XL, Yue YZ, Li HY, et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans[J]. Hortic Res, 2018, 5: 72. |
[15] | 郭树娟, 孙月, 郑昊元, 等. 小麦ABF/AREB/ABI5基因家族全基因组鉴定与表达分析[J]. 农业生物技术学报, 2023, 31(4): 667-681. |
Guo SJ, Sun Y, Zheng HY, et al. Genome-wide identification and expression analysis of ABF/AREB/ABI5 gene family in Wheat(Triticum aestivum)[J]. J Agric Biotechnol, 2023, 31(4): 667-681. | |
[16] | Mou WS, Li DD, Bu JW, et al. Comprehensive analysis of ABA effects on ethylene biosynthesis and signaling during tomato fruit ripening[J]. PLoS One, 2016, 11(4): e0154072. |
[17] | 牟望舒. 脱落酸及脱落酸-乙烯互作调控番茄果实成熟的效应与机理[D]. 杭州: 浙江大学, 2019. |
Mou WS. The roles and mechanism of abscisic acid and abscisic acid-ethylene crosstalk in the regulation of tomato fruit ripening[D]. Hangzhou: Zhejiang University, 2019. | |
[18] | 方燕. AREB/ABF/ABI5 基因家族调控草莓果实成熟机理解析[D]. 合肥: 安徽农业大学, 2020. |
Fang Y. Analysis of mechanism of strawberry fruit ripening regulated by AREB/ABF/ABI5 gene family[D]. Hefei: Anhui Agricultural University, 2020. | |
[19] | 苟琦敏, 王新文, 马建忠. 拟南芥ABI5亚家族转录因子-回顾与展望[J]. 植物生理学报, 2022, 58(6): 1068-1076. |
Gou QM, Wang XW, Ma JZ. The ABI5 subfamily transcription factors in Arabidopsis thaliana: retrospect and prospect[J]. Plant Physiol J, 2022, 58(6): 1068-1076. | |
[20] | Zhang Y, Gao WL, Li HT, et al. Genome-wide analysis of the bZIP gene family in Chinese jujube(Ziziphus jujuba Mill.)[J]. BMC Genomics, 2020, 21(1): 483. |
[21] | 李天杰, 吴颖, 高龙飞, 等. 蓝莓ABF转录因子VcABF2基因的克隆与表达分析[J]. 分子遗传育种, 2021: 1-14. |
Li TJ, Wu Y, Gao LF, et al. Cloning and expression analysis of ABF transcription factor gene VcABF2 in Blueberry[J]. Mol Plant Breed, 2021: 1-14. | |
[22] | 靳蜜静. 脱落酸处理对猕猴桃果实抗冷性的影响及转录因子Achn ABF1的功能研究[D]. 杨凌: 西北农林科技大学, 2021. |
Jin MJ. Effects of abscisic acid treatment on cold resistance of Kiwifruit and functional identification of transcription factor Achn ABF1[D]. Yangling: Northwest A&F University, 2021. | |
[23] | 徐子健. 脱落酸及转录因子SlAREB1调控番茄盐碱和低温抗性的机制研究[D]. 杨凌: 西北农林科技大学, 2022. |
Xu ZJ. The mechanism of abscisic acid and transcription factor SlAREB1 in regulating saline-alkaline and low-temperature tolerance in tomato[D]. Yangling: Northwest A&F University, 2022. | |
[24] | 王双成. 苹果属垂丝海棠MhABF和MhPYL基因的克隆及耐盐碱性功能鉴定[D]. 兰州: 甘肃农业大学, 2022. |
Wang SC. Cloning of MhABF and MhPYL genes and identification of their saline-alkali tolerance function in Malus halliana[D]. Lanzhou: Gansu Agricultural University, 2022. | |
[25] | 陈乃钰, 张国香, 张力爽, 等. ABF转录因子在植物响应非生物胁迫中的作用[J]. 植物遗传资源学报, 2021, 22(4): 930-938. |
Chen NY, Zhang GX, Zhang LS, et al. Chang-hong, The role of ABF transcription factors in response to abiotic stress in plant[J]. J Plant Genet Resour, 2021, 22(4): 930-938. | |
[26] | Contreras-López O, Vidal EA, Riveras E, et al. Spatiotemporal analysis identifies ABF2 and ABF3 as key hubs of endodermal response to nitrate[J]. Proc Natl Acad Sci USA, 2022, 119(4): e2107879119. |
[27] | Yang YL, Li HG, Wang J, et al. ABF3 enhances drought tolerance via promoting ABA-induced stomatal closure by directly regulating ADF5 in Populus euphratica[J]. J Exp Bot, 2020, 71(22): 7270-7285. |
[28] | Li XY, Liu X, Yao Y, et al. Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content[J]. Int J Mol Sci, 2013, 14(6): 12827-12842. |
[29] | Nitsch L, Kohlen W, Oplaat C, et al. ABA-deficiency results in reduced plant and fruit size in tomato[J]. J Plant Physiol, 2012, 169(9): 878-883. |
[30] | Sun L, Sun YF, Zhang M, et al. Suppression of 9-cis-epoxycarotenoid dioxygenase, which encodes a key enzyme in abscisic acid biosynthesis, alters fruit texture in transgenic tomato[J]. Plant Physiol, 2012, 158(1): 283-298. |
[31] | Wang SS, Saito T, Ohkawa K, et al. Abscisic acid is involved in aromatic ester biosynthesis related with ethylene in green apples[J]. J Plant Physiol, 2018, 221: 85-93. |
[32] | 崔春晓. 番茄成熟过程中ABA相关转录因子调控乙烯合成的研究[D]. 郑州: 河南工业大学, 2023. |
Cui CX. Regulations of ethylene synthesisby ABA-regulated transcription factors during tomato fruit ripening[D]. Zhenzhou: Henan University of Technology, 2023. | |
[33] | Wu Q, Tao XY, Ai XZ, et al. Contribution of abscisic acid to aromatic volatiles in cherry tomato(Solanum lycopersicum L.) fruit during postharvest ripening[J]. Plant Physiol Biochem, 2018, 130: 205-214. |
[34] | 邓璇. 转录因子MaJOINTLESS及上游调控因MaABI5、MaABF1在桑葚落果中的功能研究[D]. 重庆: 西南大学, 2023. |
Deng X. Study on the Function of transcription factor MaJOINTLESS and upstream regulatory factors MaABI5 and MaABF1 during fruit abscission in mulberry(Morus alba L.)[D]. Chongqing: Southwest University, 2023 | |
[35] | Feng G, Wu J, Xu Y, et al. High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis[J]. Plant Biotechnol J, 2021, 19: 1337-1353. |
[1] | SONG Bing-fang, LIU Ning, CHENG Xin-yan, XU Xiao-bin, TIAN Wen-mao, GAO Yue, BI Yang, WANG Yi. Identification of Potato G6PDH Gene Family and Its Expression Analysis in Damaged Tubers [J]. Biotechnology Bulletin, 2024, 40(9): 104-112. |
[2] | WU Hui-qin, WANG Yan-hong, LIU Han, SI Zheng, LIU Xue-qing, WANG Jing, YANG Yi, CHENG Yan. Identification and Expression Analysis of UGT Gene Family in Pepper [J]. Biotechnology Bulletin, 2024, 40(9): 198-211. |
[3] | WU Juan, WU Xiao-juan, WANG Pei-jie, XIE Rui, NIE Hu-shuai, LI Nan, MA Yan-hong. Screening and Expression Analysis of ERF Gene Related to Anthocyanin Synthesis in Colored Potato [J]. Biotechnology Bulletin, 2024, 40(9): 82-91. |
[4] | WU Shuai, XIN Yan-ni, MAI Chun-hai, MU Xiao-ya, WANG Min, YUE Ai-qin, ZHAO Jin-zhong, WU Shen-jie, DU Wei-jun, WANG Li-xiang. Genome-wide Identification and Stress Response Analysis of Soybean GS Gene Family [J]. Biotechnology Bulletin, 2024, 40(8): 63-73. |
[5] | LIU Rong, TIAN Min-yu, LI Guang-ze, TAN Cheng-fang, RUAN Ying, LIU Chun-lin. Identification and Induced-expression Analysis of REVEILLE Family in Brassica napus L. [J]. Biotechnology Bulletin, 2024, 40(6): 161-171. |
[6] | LI Jia-xin, LI Hong-yan, LIU Li-e, ZHANG Tian, ZHOU Wu. Identification and Expression Analysis of the NRAMP Family in Seabuckthorn Under Lead Stress [J]. Biotechnology Bulletin, 2024, 40(5): 191-202. |
[7] | ZHONG Yun, LIN Chun, LIU Zheng-jie, DONG Chen-wen-hua, MAO Zi-chao, LI Xing-yu. Cloning and Prokaryotic Expression Analysis of Asparagus Saponin Synthesis Related Glycosyltransferase Genes [J]. Biotechnology Bulletin, 2024, 40(4): 255-263. |
[8] | WANG Yi-qing, WANG Tao, WEI Chao-ling, DAI Hao-min, CAO Shi-xian, SUN Wei-jiang, ZENG Wen. Identification and Interaction Analysis of SMAS Gene Family in Tea Plant(Camellia sinensis) [J]. Biotechnology Bulletin, 2023, 39(4): 246-258. |
[9] | CHEN Qiang, ZHOU Ming-kang, SONG Jia-min, ZHANG Chong, WU Long-kun. Identification and Analysis of LBD Gene Family and Expression Analysis of Fruit Development in Cucumis melo [J]. Biotechnology Bulletin, 2023, 39(3): 176-183. |
[10] | PING Huai-lei, GUO Xue, YU Xiao, SONG Jing, DU Chun, WANG Juan, ZHANG Huai-bi. Cloning and Expression of PdANS in Paeonia delavayi and Correlation with Anthocyanin Content [J]. Biotechnology Bulletin, 2023, 39(3): 206-217. |
[11] | GUO Zhi-hao, JIN Ze-xin, LIU Qi, GAO Li. Bioinformatics Analysis, Subcellular Localization and Toxicity Verification of Effector g11335 in Tilletia contraversa Kühn [J]. Biotechnology Bulletin, 2022, 38(8): 110-117. |
[12] | YU Qiu-lin, MA Jing-yi, ZHAO Pan, SUN Peng-fang, HE Yu-mei, LIU Shi-biao, GUO Hui-hong. Cloning and Functional Analysis of Gynostemma pentaphyllum GpMIR156a and GpMIR166b [J]. Biotechnology Bulletin, 2022, 38(7): 186-193. |
[13] | CHEN Jia-min, LIU Yong-jie, MA Jin-xiu, LI Dan, GONG Jie, ZHAO Chang-ping, GENG Hong-wei, GAO Shi-qing. Expression Pattern Analysis of Histone Methyltransferase Under Drought Stress in Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(7): 51-61. |
[14] | LIU Jing-jing, LIU Xiao-rui, LI Lin, WANG Ying, YANG Hai-yuan, DAI Yi-fan. Establishment of Porcine Fetal Fibroblasts with OXTR-knockout Using CRISPR/Cas9 [J]. Biotechnology Bulletin, 2022, 38(6): 272-278. |
[15] | WANG Nan, ZHANG Rui, PAN Yang-yang, HE Hong-hong, WANG Jing-lei, CUI Yan, YU Si-jiu. Cloning of Bos grunniens TGF-β1 Gene and Its Expression in Major Organs of Female Reproductive System [J]. Biotechnology Bulletin, 2022, 38(6): 279-290. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||