Biotechnology Bulletin ›› 2015, Vol. 31 ›› Issue (3): 70-81.doi: 10.13560/j.cnki.biotech.bull.1985.2015.04.010
Previous Articles Next Articles
Li Yi Wang Chaogang Hu Zhangli
Received:
2014-08-03
Online:
2015-03-16
Published:
2015-03-16
Li Yi, Wang Chaogang, Hu Zhangli. Research Advances of Genetic Engineering of Microalgae for Improving Lipid Production[J]. Biotechnology Bulletin, 2015, 31(3): 70-81.
[1] Radakovits R, Jinkerson RE, Darzins A, et al. Genetic engineering of algae for enhanced biofuel production[J]. Eukaryotic Cell, 2010, 9(4):486-501. [2] Zhang FY, Yang MF, Xu YN. Silencing of DGAT1 in tobacco causes a reduction in seed oil content[J]. Plant Science, 2005, 169(4):689-694. [3] 陈锦清, 郎春秀, 胡张华, 等. 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J]. 农业生物技术学报, 1999, 7(4):316-320. [4] 姚茹, 程丽华, 徐新华, 等. 微藻的高油脂化技术研究进展[J]. 化学进展, 2010, 22(6):1221-1232. [5] 夏金兰, 万民熙, 王润民, 等. 微藻生物柴油的现状与进展[J]. 中国生物工程杂志, 2009, 29(7):118-126. [6] Merchant SS, Prochnik SE, Vallon O, et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions[J]. Science, 2007, 318(5848):245-250. [7] 王金娜, 严小军, 周成旭, 等. 产油微藻的筛选及中性脂动态积累过程的检测[J]. 生物物理学报, 2010, 26(6):472-480. [8] 朱顺妮, 王忠铭, 尚常花, 等. 微藻脂肪合成与代谢调控[J]. 化学进展, 2011, 23(10):2169-2176. [9] 李兴军, 林文亚. 利用遗传工程提高油料作物含油量的研究进展[J]. 粮食科技与经济, 2010, 35(6):33-36. [10] Hu Q, Sommerfeld M, Jarvis E, et al. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances[J]. The Plant Journal, 2008, 54:621-639. [11] 赫冬梅, 段舜山. 代谢调控在微藻油脂累积中的作用[J]. 生态科学, 2009, 28(1):85-89. [12] Georgianna DR, Mayfield SP. Exploiting diversity and synthetic biology for the production of algal biofuels[J]. Nature, 2012, 488:329-330. [13] Sheehan J, Dunahay T, Benemann J, et al. A look back at the US Department of Energy’s aquatic species program:biodiesel from algae[M]. Colorado:National Renewable Energy Laboratory, 1998:328. [14] Michinaka Y, Shimauchi T, Aki T, et al. Extracellular secretion of free fatty acids by disruption of a fatty acyl-CoA synthetase gene in Saccharomyces cerevisiae[J]. Journal of Bioscience and Bioengineering, 2003, 95(5):435-440. [15] 于水燕, 赵权宇, 史吉平. 固碳产油微藻的基因工程改造[J]. 中国生物工程杂志, 2012, 32(12):117-124. [16] Sinetova MA, Kupriyanova EV, Markelova AG, et al. Identification and functional role of the carbonic anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas reinhardtii[J]. Biochimica et Biophysica Acta, 2012, 1817:1248-1255. [17] Fulda M, Schnurr J, Abbadi A, et al. Peroxisomal acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana[J]. The Plant Cell, 2004, 16(2):394-405. [18] Germain V, Rylott EL, Larson TR, et al. Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings[J]. The Plant Journal, 2001, 28(1):1-12. [19] Rylott EL, Rogers CA, Gilday AD, et al. Arabidopsis mutants in short- and medium-chain acyl-CoA oxidase activities accumulate acyl-CoAs and reveal that fatty acid β-oxidation is essential for embryo development[J]. The Journal of Biological Chemistry, 2003, 278:21370-21377. [20] Shi S, Chen Y, Siewers V, et al. Improving production of malonyl coenzyme A-derived metabolites by abolishing Snf1-dependent regulation of Acc1[J]. MBio, 2014, 5:1-8. [21] Davis MS, Solbiati J, Cronan JE. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli[J]. Journal of Biological Chemistry, 2000, 275:28593-28598. [22] Dunahay TG, Jarvis EE, Roessler PG. Genetic transformation of the diatoms Cyclotella cryptica and Navicula saprophila[J]. Journal of Phycology, 1995, 31(6):1004-1012. [23] Dehesh K, Tai H, Edwards P, et al. Overexpression of 3-ketoacyl-acyl-carrier protein synthase IIIs in plants reduces the rate of lipid synthesis[J]. Plant Physiology, 2001, 125:1103-1114. [24] Griffiths MJ, Harrison STL. Lipid productivity as a key character-istic for choosing algal species for biodiesel production[J]. Journal of Applied Phycology, 2009, 21:493-507. [25] Mutanda T, Ramesh D, Karthikeyan S, et al. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production[J]. Bioresource Technology, 2011, 102:57-70. [26] Larkum AWD, Ross IL, Kruse O, et al. Selection, breeding and engineering of microalgae for bioenergy and biofuel production[J]. Trends in Biotechnology, 2011, 30:198-205. [27] 冯国栋, 程丽华, 徐新华, 等. 微藻高油脂化基因工程研究策略[J]. 化学进展, 2012, 24:1413-1426. [28] Kim JW. Topical prostaglandin analogue drugs inhibit adipocyte differentiation[J]. Korean Journal of Ophthalmology, 2014, 28:257-264. [29] Yi B, Wang J, Wang S, et al. Overexpression of Banna mini-pig inbred line fatty acid binding protein 3 promotes adipogenesis in 3T3-L1 preadipocytes[J]. Cell Biology International, 2014, 38:918-923. [30] Vigeolas H, Waldeck P, Zank T, et al. Increasing seed oil content in oil-seed rape(Brassica napus L. )by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnology Journal, 2007, 5:431-441. [31] Misra N, Panda PK. In search of actionable targets for agrigenomics and microalgal biofuel production:sequence-structural diversity studies on algal and higher plants with a focus on GPAT protein[J]. OMICS:A Journal of Integrative Biology, 2013, 17:173-186. [32] Jain RK, Coffey M, Lai K, et al. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes[J]. Biochemical Society Transactions, 2000, 28:958-961. [33] Zou J, Katavic V, Giblin EM, et al. Modification of seed oil content and acyl composition in the brassicaceae by expression of a yeast sn-2 acyltransferase gene[J]. The Plant Cell, 1997, 9:909-923. [34] Knutzon DS, Hayes TR, Wyrick A, et al. Lysophosphatidic acid acyltransferase from coconut endosperm mediates the insertion of laurate at the sn-2 position of triacylglycerols in lauric rapeseed oil and can increase total laurate levels[J]. Plant Physiology, 1999, 120:739-746. [35] Lv H, Qu G, Qi X, et al. Transcriptome analysis of Chlamydomonas reinhardtii during the process of lipid accumulation[J]. Genomics, 2013, 101:229-237. [36] Pingitore P, Pirazzi C, Mancina RM, et al. Recombinant PNPLA3 protein shows triglyceride hydrolase activity and its I148M mutation results in loss of function[J]. Biochimica et Biophysica Acta, 2014, 1841:574-580. [37] Eto M, Shindou H, Shimizu T. A novel lysophosphatidic acid acyl-transferase enzyme(LPAAT4)with a possible role for incorpora-ting docosahexaenoic acid into brain glycerophospholipids[J]. Biochemical and Biophysical Research Communications, 2014, 443:718-724. [38] Lardizabal K, Effertz R, Levering C, et al. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean[J]. Plant Physiology, 2008, 148:89-96. [39] Zheng P, Allen WB, Roesler K, et al. A phenylalanine in DGAT is a key determinant of oil content and composition in maize[J]. Nature Genetics, 2008, 40:367-372. [40] Bouvier-Navé P, Benveniste P, Oelkers P, et al. Expression in yeast and tobacco of plant cDNAs encoding acyl CoA:diacylglycerol acyltransferase[J]. European Journal of Biochemistry, 2000, 267:85-96. [41] Jako C, Kumar A, Wei Y, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight[J]. Plant Physiology, 2001, 126:861-874. [42] Deng X, Li Y, Fei X. The mRNA abundance of pepc2 gene is negatively correlated with oil content in Chlamydomonas reinhardtii[J]. Biomass and Bioenergy, 2011, 35(5):1811-1817. [43] Deng X, Cai J, Li Y, et al. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii[J]. Biotechnology Letters, 2014, 108:56-67. [44] De Riso V, Raniello R, Maumus F, et al. Gene silencing in the marine diatom Phaeodactylum tricornutum[J]. Nucleic Acids Research, 2009, 57:66-78. [45] Molnar A, Bassett A, Thuenemann E, et al. Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii[J]. The Plant Journal, 2009, 58(1):165-174. [46] Tong J, Zhang GM, Wang XF, et al. Cloning of citrate synthase gene in rapeseed(Brassica napus L. )and its expression under stresses[J]. Acta Agronomica Sinica, 2009, 35:33-40. [47] Hu LH, Wu HM, Zhou ZM, et al. Introduction of citrate synthase gene(CS)into an elite indica rice restorer line Minghui 86 by agrobacterium -mediated method[J]. Molecular Plant Breeding, 2006, 4:160-166. [48] Barone P, Rosellini D, LaFayette P, et al. Bacterial citrate synthase expression and soil aluminum tolerance in transgenic alfalfa[J]. Plant Cell Reports, 2008, 27(5):893-901. [49] Chi GH, Zhou XL, Li MY, et al. Cloning and bioinformatics analysis of MaGCS encoding a homolog citrate synthase from banana[J]. Chinese Journal of Tropical Agriculture, 2009, 29:12-18. [50] Zhang XM, Du LQ, Sun GM, et al. Changes in organic acid concentrations and the relative enzyme activities during the development of Cayenne pineapple fruit[J]. Journal of Fruit Science, 2007, 24:381-384. [51] Taylor BF. Fine control of citrate synthase activity in blue-green algae[J]. Arch Mikrobiol, 1973, 92(3):245-249. [52] Deng X, Cai J, Fei X. Effect of the expression and knockdown of citrate synthase gene on carbon flux during triacylglycerol biosynthesis by green algae Chlamydomonas reinhardtii[J]. BMC Biochemistry, 2013, 14:38-49. [53] Zhao T, Wang W, Bai X, et al. Gene silencing by artificial microRNAs in Chlamydomonas[J]. The Plant Journal, 2009, 58(1):157-164. [54] Nojima Y, Kibayashi A, Matsuzaki H, et al. Isolation and characterization of triacylglycerol-secreting mutant strain from yeast, Saccharomyces cerevisiae[J]. The Journal of General and Applied Microbiology, 1999, 45:1-6. [55] Scharnewski M, Pongdontri P, Mora G, et al. Mutants of Saccharomyces cerevisiae deficient in acyl-CoA synthetases secrete fatty acids due to interrupted fatty acid recycling[J]. FEBS Journal, 2008, 275(11):2765-2778. [56] Ramazanov A, Ramazanov Z. Isolation and characterization of a starchless mutant of Chlorella pyrenoidosa STL-PI with a high growth rate, and high protein and polyunsaturated fatty acid content[J]. Phycological Research, 2006, 54(4):255-259. [57] 刘飞飞, 李秀波, 方仙桃, 等. 三角褐指藻产油突变株的筛选[J]. 水生生物学报, 2013, 37(4):799-802. [58] Roessler PG, Chen Y, Liu B, et al. Secretion of fatty acids by photosynthetic microorganisms:US, US20080333280[P]. 2009-12-3. [59] Gibbons GF, Islam K, Pease RJ. Mobilisation of triacylglycerol stores[J]. Biochimica et Biophysica Acta, 2000, 1483(1):37-57. [60] Lehner R, Vance DE. Cloning and expression of a cDNA encoding a hepatic microsomal lipase that mobilizes stored triacylglycerol[J]. Biochemical Journal, 1999, 343:1-10. [61] Tietge UJF, Bakillah A, Maugeais C, et al. Hepatic overexpression of microsomal triglyceride transfer protein(MTP)results in increased in vivo secretion of VLDL triglycerides and apolipoprotein B[J]. The Journal of Lipid Research, 1999, 40:2134-2139. [62] McManaman JL, Russell TD, Schaack J, et al. Molecular determinants of milk lipid secretion[J]. Journal of Mammary Gland Biology and Neoplasia, 2007, 12(4):259-268. [63] Panikashvili D, Savaldi-Goldstein S, Mandel T, et al. The Arabidopsis DESPERADO/AtWBC11 transporter is required for cutin and wax secretion[J]. Plant Physiology, 2007, 145:1345-1360. [64] Pighin JA, Zheng H, Balakshin LJ, et al. Plant cuticular lipid export requires an ABC transporter[J]. Science, 2004, 306:702-704. [65] Janvilisri T, Venter H, Shahi S, et al. Sterol transport by the human breast cancer resistance protein(ABCG2)expressed in Lactococcus lactis[J]. The Journal of Biological Chemistry, 2003, 278:20645-20651. [66] Mentewab A, Stewart CN. Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants[J]. Nature Biotechnology, 2005, 23:1177-1180. [67] Yu L, Gupta S, Xu F, et al. Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion[J]. The Journal of Biological Chemistry, 2005, 280:8742-8747. [68] Hayashi M, Nito K, Takei-Hoshi R, et al. Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid beta-oxidation[J]. Plant and Cell Physiology, 2002, 43(1):1-11. [69] Zolman BK, Silva ID, Bartel B. The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid beta-oxidation[J]. Plant Physiology, 2001, 127(3):1266-1278. |
[1] | YE Yun-fang, TIAN Qing-yin, SHI Ting-ting, WANG Liang, YUE Yuan-zheng, YANG Xiu-lian, WANG Liang-gui. Research Progress in the Biosynthesis and Regulation of β-ionone in Plants [J]. Biotechnology Bulletin, 2023, 39(8): 91-105. |
[2] | LI Yuan-hong, GUO Yu-hao, CAO Yan, ZHU Zhen-zhou, WANG Fei-fei. Research Progress in the Microalgal Growth and Accumulation of Target Products Regulated by Exogenous Phytohormone [J]. Biotechnology Bulletin, 2023, 39(6): 61-72. |
[3] | WANG Xin-lu, WANG Meng, ZHAI Wen-lei. Application of Lipidomics in Toxicological Studies [J]. Biotechnology Bulletin, 2023, 39(3): 69-80. |
[4] | MIAO Shu-nan, GAO Yu, LI Xin-ru, CAI Gui-ping, ZHANG Fei, XUE Jin-ai, JI Chun-li, LI Run-zhi. Functional Analysis of Soybean GmPDAT1 Genes in the Oil Biosynthesis and Response to Abiotic Stresses [J]. Biotechnology Bulletin, 2023, 39(2): 96-106. |
[5] | CHEN Ying-dan, ZHANG Yang, XIA Qiang, SUN Hong-xia. Gene Editing Technology of CRISPR/Cas and Its Applications in Microalgae Research [J]. Biotechnology Bulletin, 2022, 38(5): 257-268. |
[6] | YAN Jiong, FENG Chen-yi, GAO Xue-kun, XU Xiang, YANG Jia-min, CHEN Zhao-yang. Construction of Homozygous Plin1-knockout Mouse Model and Phenotype Analysis Based on CRISPR/Cas9 Technology [J]. Biotechnology Bulletin, 2022, 38(3): 173-180. |
[7] | MA Yan-qin, QIU Yi-bin, LI Sha, XU Hong. Research Progress in the Biosynthesis and Metabolic Engineering of Hyaluronic Acid [J]. Biotechnology Bulletin, 2022, 38(2): 252-262. |
[8] | YUAN Kai, HE Wei, YANG Yun-li, ZHU Wei-yu, PENG Chao, AN Tai, LI Li, ZHOU Wei-qiang. Research Progress on Biosynthesis and Metabolic Regulation of Ganoderic Acids [J]. Biotechnology Bulletin, 2021, 37(8): 46-54. |
[9] | XU Kun, YANG Ai-jiang, HU Xia, ZOU Hai-tao, LI Bin, LIU Ji. Antimony Accumulation and Its Effect on Antioxidation System in Different Tissues of Danio rerio [J]. Biotechnology Bulletin, 2021, 37(4): 145-154. |
[10] | ZHANG Hao, ZHANG Ya-nan, LI Xin, WANG Jia-mei, WANG Yong, ZHU Jiang-jiang, XIONG Yan, LIN Ya-qiu. Effect of PDK4 on the Lipid Metabolism of Goat Intramuscular Adipocytes [J]. Biotechnology Bulletin, 2021, 37(12): 151-159. |
[11] | GU Han-qi, SHAO Ling-zhi, LIU Ran, LIU Xiao-guang, LI Ling, LIU Qian, LI Jie, ZHANG Ya-li. Lipidomics Analysis of Saccharomyces cerevisiae with Tolerance to Phenolic Inhibitors [J]. Biotechnology Bulletin, 2021, 37(1): 15-23. |
[12] | TIAN He, SHUI Guang-hou. Advances in Analysis Methods of Mass Spectrometry-based Metabolomics [J]. Biotechnology Bulletin, 2021, 37(1): 24-32. |
[13] | HU Bin-yue, HU Yang, CHENG Wen-min, ZHAO Su-mei, ZHAO Hong-Ye, WEI Hong-Jiang. Lipid Droplet Formation in the Pre-adipocytes of Leptin-overexpressed Pig [J]. Biotechnology Bulletin, 2020, 36(8): 111-119. |
[14] | LI Tao, ZHAO Wei, YANG Bing-Jie, CHEN Zi-Shuo, WU Hua-lian, WU Hou-bo, XIANG Wen-zhou. Outdoor Cultivation Oil Extraction of the Salt-tolerant Microalga,Eustigmatos sp. [J]. Biotechnology Bulletin, 2020, 36(7): 130-138. |
[15] | ZHAO Xu, XU Qun, HOU Yan-ru, LI Ming-yu, ZHANG Ya-ning, WANG Hai. Effects of ANGPTL4 on Intestinal Microbiota Affecting Lipid Metabolism of Animals [J]. Biotechnology Bulletin, 2020, 36(6): 230-235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||