[1] Cheng XY, Huang WJ, Hu SC, et al. A global characterization and identification of multifunctional enzymes[J]. PLoS ONE, 2012, 7(6):e38979. [2] Jeffery CJ. Moonlighting proteins[J]. Trends in Biochemical Sciences, 1999, 24:8-11. [3] Jeffery CJ. Molecular mechanisms for multitasking:recent crystal structures of moonlighting proteins[J]. Current Opinion in Structural Biology, 2004, 14:663-668. [4] Janeček Š, Svensson B, MacGregor EA. α-Amylase:an enzyme specificity found in various families of glycoside hydrolases[J]. Cellular and Molecular Life Sciences, 2014, 71(7):1149-1170. [5] Cantarel BL, Coutinho PM, Rancurel C, et al. The Carbohydrate-Active EnZymes database(CAZy):an expert resource for Glycogenomics[J]. Nucleic Acids Research, 2009, 37:D233-238. [6] Cuskin F, Flint J, Gloster T, et al. How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(51):20889-20894. [7] Abbott D, van Bueren A. Using structure to inform carbohydrate binding module function[J]. Current Opinion in Structural Biology, 2014:32-40. [8] Peng H, Zheng Y, Chen M, et al. A starch-binding domain identified in α-amylase(AmyP)represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch[J]. FEBS Letters, 2014, 588(7):1161-1167. [9] Valk V, Lammol/Lerts van Bueren A, van der Kaaij RM, et al. Carbohydrate Binding Module 74 is a novel starch binding domain associated with large and multi-domain α-amylase enzymes[J]. FEBS Journal, 2016, 283(12):2354-2368. [10] Xie W, Lin BK, Zhou Z, et al. Characterization of a novel β-agarase from an agar-degrading bacterium Catenovulum sp. X3[J]. Applied Microbiology and Biotechnology, 2013, 97(11):4907-4915. [11] Han P, Zhou P, Hu S, et al. A novel multifunctional α-amylase from the thermophilic fungus Malbranchea cinnamomea:biochemical characterization and three-dimensional structure[J]. Applied Biochemistry and Biotechnology, 2013, 170(2):420-435. [12] Cao H, Gao G, Gu Y, et al. Trp358 is a key residue for the multiple catalytic activities of multifunctional amylase OPMA-N from Bacillus sp. ZW2531-1[J]. Applied Microbiology and Biotechnology, 2014, 98(5):2101-2111. [13] Han X, Lin B, Ru G, et al. Gene cloning and characterization of an α-amylase from Alteromonas macleodii B7 for Enteromorpha polysaccharide degradation[J]. Journal of Microbiology and Biotechnology, 2014, 24(2):254-263. [14] Xu Q, Cao Y, Li X, et al. Purification and characterization of a novel intracellular α-amylase with a wide variety of substrates hydrolysis and transglycosylation activity from Paenibacillus sp. SSG-1[J]. Protein Expression and Purification, 2016, doi:10. 1016/j. pep. 2016. 04. 007. [15] Liu G, Wu S, Jin W, et al. Amy63, a novel type of marine bacterial multifunctional enzyme possessing amylase, agarase and carrageenase activities[J]. Scientific Reports, 2016, 6:18726. [16] Lin BK, Lu GY, Zheng YD, et al. Aquimarina agarilytica sp. nov. , a novel agarolytic species isolated from red alga[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62:869-873. [17] Lin BK, Lu GY, Li SK, et al. Draft genome sequence of the Novel agarolytic bacterium Aquimarina agarilytica ZC1[J]. Journal of Bacteriology, 2012, 194(10):2769. [18] Tamura K, Stecher G, Peterson D, et al. MEGA6:Molecular evolutionary genetics analysis Version 6.0[J]. Molecular Biology and Evolution, 2013, 30:2725-2729. [19] Ye L, Su X, Schmitz G, et al. Molecular and biochemical analyses of the GH44 module of CbMan5B/Cel44A, a bifunctional enzyme from the hyperthermophilic bacterium Caldicellulosiruptor bescii[J]. Applied and Environmental Microbiology, 2012, 78(19):7048-7059. [20] Huy ND, Thayumanavan P, Kwon T, et al. Characterization of a recombinant bifunctional xylosidase/arabinofuranosidase from Phanerochaete chrysosporium[J]. Journal of Bioscience and Bioengineering, 2013, 116(2):152-159. [21] Xue X, Wang R, Tu T, et al. The N-terminal GH10 domain of a multimodular protein from Caldicellulosiruptor bescii is a versatile Xylanase/β-Glucanase that can degrade crystalline cellulose[J]. Appl Environ Microbiol, 2015, 81(11):3823-3833. [22] Yang W, Bai Y, Yang P, et al. A novel bifunctional GH51 exo-α- l -arabinofuranosidase/ endo- xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity[J]. Biotechnology for Biofuels, 2015, 8(1):1-11. [23] Hoffmam ZB, Zanphorlin LM, Cota J, et al. Xylan-specific carbohydrate-binding module belonging to family 6 enhances the catalytic performance of a GH11 endo-xylanase[J]. New Biotechnology, 2016, 33(4):467-472. [24] Li S, Yang X, Bao M, et al. Family 13 carbohydrate-binding module of alginate lyase from Agarivorans sp. L11 enhances its catalytic efficiency and thermostability, and alters its substrate preference and product distribution[J]. Fems Microbiology Letters, 2015, doi:10. 1093/femsle/ fnv054. [25] Majzlova K, Janecek S. Two structurally related starch-binding domain families CBM25 and CBM26[J]. Biologia, 2014, 69(9):1087-1096. [26] Rodriguez-Sanoja R, Ruiz B, Guyot JP, et al. Starch-binding domain affects catalysis in two Lactobacillus α-amylases[J]. Applied and Environmental Microbiology, 2005, 71:297-302. [27] Guillen D, Santiago ML, Linares LK, et al. Alpha-amylase starch binding domains:cooperative effects of binding to starch granules of multiple tandemly arranged domains[J]. Applied and Environmental Microbiology, 2007, 73(12):3833-3837. [28] Hsu P, Wei C, Lu W, et al. Extracellular production of a novel endo-β-agarase AgaA from Pseudomonas vesicularis MA103 that cleaves agarose into neoagarotetraose and neoagarohexaose[J]. International Journal of Molecular Sciences, 2015, 16(3):5590-5603. [29] Michel G, Barbeyron T, Kloareg B, et al. The family 6 carbohydrate-binding modules have coevolved with their appended catalytic modules toward similar substrate specificity[J]. Glycobiology, 2009, 19(6):615-623. [30] Lu X, Chu Y, Wu Q, et al. Cloning, expression and characterization of a new agarase- encoding gene from marine Pseudoalteromonas sp. [J]. Biotechnology Letters, 2009, 31(10):1565-1570. [31] Shi Y, Lu X, Yu W, et al. A new β-agarase from marine bacterium Janthinobacterium sp. SY12[J]. World Journal of Microbiology & Biotechnology, 2008, 24(11):2659-2664. |