Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (6): 31-48.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1274
Previous Articles Next Articles
XIAO Liang(), WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing()
Received:
2022-10-17
Online:
2023-06-26
Published:
2023-07-07
Contact:
YAN Hua-bing
E-mail:xiaoliang0918@163.com;34126730@qq.com
XIAO Liang, WU Zheng-dan, LU Liu-ying, SHI Ping-li, SHANG Xiao-hong, CAO Sheng, ZENG Wen-dan, YAN Hua-bing. Research Progress of Important Traits Genes in Cassava[J]. Biotechnology Bulletin, 2023, 39(6): 31-48.
性状 Trait | 基因ID Gene ID | 基因注释 Gene annotation | 参考文献Reference |
---|---|---|---|
第一分支高度 The first branch height | Manes.09G041800 | 钙调素蛋白激酶20 Calcium-dependent protein kinase 20 | [ |
Manes.09G041900 | ABC-2型转运蛋白 ABC-2 type transporter protein | ||
Manes.02G212100 | 果胶酸酯裂解酶超家族蛋白 Pectin lyase-like superfamily protein | ||
Manes.02G212200 | 未知蛋白 Unknown protein | ||
Manes.03G061100 | 半胱氨酸氨基转移 Cysteine aminotransferase | ||
Manes.03G061200 | 四跨膜蛋白 Tetraspanin | ||
Manes.10G123100 | 跨膜蛋白9超家族成员1 Transmembrane 9 superfamily member 1 | ||
Manes.09G143900 | 未知蛋白 Unknown protein | ||
Manes.09G144000 | 未知蛋白 Unknown protein | ||
Manes.09G143800 | NAC转录因子87 NAC transcriptional factor 87 | ||
Manes.03G059800 | 未知蛋白 Unknown protein | ||
茎直径 Stem diameter | Manes.03G059800 | 未知蛋白 Unknown protein | [ |
Manes.03G170000 | 加工rRNA蛋白EFG1 rRNA-processing protein EFG1 | ||
Manes.03G169900 | α-甘露糖苷酶 alpha-mannosidase | ||
Manes.14G021000 | NADH脱氢酶-1-α-亚基复合体亚基5 NADH dehydrogenase-1-alpha-subcomplex subunit 5 | ||
Manes.14G020900 | SNARE-like蛋白 SNARE-like protein | ||
Manes.07G117800 | POTUNDIFOLIA蛋白 POTUNDIFOLIA protein | ||
Manes.07G117700 | 未知蛋白 Unknown protein | ||
Manes.07G007700 | 细胞色素b5域RLF Cytochrome b5 domain-containing protein RLF | ||
Manes.07G007800 | 环阿屯醇-碳-24-甲基转移酶 Cycloartenol-C-24-methyltransferase | ||
Manes.06G047300 | 未知蛋白 Unknown protein | ||
叶指宽 Lobular width | Manes.05G164600 | 核糖体蛋白S9 Ribosomal protein S9 | [ |
Manes.05G164500 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | ||
Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | ||
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | 膜蛋白PM19L Membrane protein PM19L | ||
Manes.10G312000 | OBF3蛋白 OBF3 protein | ||
叶指长 Lobular length | Manes.05G026500 | 葡萄糖-6-磷酸差相异构酶 Glucose-6-phosphate1-epimerase | [ |
Manes.05G026600 | 未知蛋白 Unknown protein | ||
Manes.05G026700 | G-box结合因子 G-box binding factor | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.18G018500 | 组氨酸超家族蛋白 Histone superfamily protein | ||
Manes.04G057300 | 醛氧化酶2 Aldehyde oxidase 2 | ||
叶柄长度 Petiole length | Manes.01G201900 | bHLH转录因子 bHLH transcriptional factor | [ |
Manes.01G202000 | 未知蛋白 Unknown protein | ||
叶指长宽比 Leaf aspect ratio | Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | [ |
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | AWPM-19-like家族蛋白 AWPM-19-like family protein | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.14G056200 | MA3蛋白 MA3 protein | ||
Manes.14G056100 | MA3蛋白 MA3 protein | ||
Manes.14G056300 | 未知蛋白 Unknown protein | ||
Manes.01G182700 | 蔗糖转化酶/果胶甲基转移酶抑制子 Invertase/pectin methylesterase inhibitor | ||
Manes.01G182800 | 未知蛋白 Unknown protein | ||
Manes.01G182900 | 甘氨酸富集蛋白 Glycine-rich protein | ||
Manes.03G184600 | P-loop-核苷三磷酸水解酶 P-loop-containing nucleoside triphosphate hydrolase | ||
Manes.03G186500 | α-水解酶 α-hydrolase | ||
Manes.10G031200 | OBF3蛋白 OBF3 protein | ||
叶形 The shape of leaf | Manes.15G136200 | KNOX1和KNOX2蛋白 KNOX1 and KNOX2 protein | [ |
叶柄颜色 Petiole color | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
绿叶 Green leaf | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
干物质重量 Dry mass weight | Manes.02G192500 | 未知蛋白 Unknown protein | [ |
Manes.02G192600 | RING/U-box锌指家族蛋白 RING/U-box zinc finger family protein | ||
Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | ||
Manes.02G169800 | 未知蛋白 Unknown protein | ||
Manes.02G154700 | β-D-木糖苷酶7 Beta-D-xylosidase 7 | ||
Manes.02G154800 | 类钙神经素金属磷酸酯酶 Calcineurin-like metallo-phosphoesterase | ||
储藏根数目 Number of storage roots | Manes.05G125100 | 丝氨酸/苏氨酸蛋白激酶IRE1b Ser/Thr protein kinase IRE1b | [ |
Manes.05G125200 | 3-磷酸甘油醛脱氢酶B亚基 Glyceraldehyde-3-phosphate dehydrogenase B subunit | ||
Manes.05G125300 | 未知蛋白 Unknown protein | ||
Manes.04G057900 | 未知蛋白 Unknown protein | ||
Manes.04G058000 | 未知蛋白 Unknown protein | ||
Manes.09G099100 | 未知蛋白 Unknown protein | ||
Manes.09G099200 | 铜转运蛋白6 Copper transport protein 6 | ||
Manes.09G099300 | 热激蛋白HSP20-like Heat shock protein HSP20-like | ||
储藏根重量 Storage roots weight | Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | [ |
Manes.02G169800 | 未知蛋白 Unknown protein | ||
收获指数 Harvest index | Manes.02G035900 | β-果糖基转移酶 Beta-fructofuranosidase | [ |
Manes.02G037700 | 4 glucan phosphorylase L isozyme | ||
淀粉含量 Starch content | Manes.13G023300 | β-1,4-氮-乙酰葡糖氨基转移酶 Beta-1,4-N-acetylglucosaminyl transferase | [ |
Manes.13G023400 | NAD(P)-氧化还原酶 NAD(P)-linked oxidoreductase | ||
Manes.05G177800 | 碳水化合物酯酶 Carbohydrate esterase | ||
总类胡萝卜素含量 Total carotenoid content | Manes.01G124200 | 八氢番茄红素酶2 Phytoene synthase 2 | [ |
Manes.05G051700 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | [ | |
Manes.15G102000 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | ||
Manes.16G099600 | β-番茄红素环化酶 Lycopene beta cyclase | [ | |
Manes.09G008200 | ε-番茄红素E环化酶 Lycopene epsilon cyclase | ||
Manes.06G152200 | β-胡萝卜素羟化酶 Beta-carotene hydroxylase | ||
干物质含量 Dry mass content | Manes.14G007500 | 质体3-磷酸甘油醛脱氢酶2 Glyceraldehyde-3-phosphate dehydrogenase of plastid 2 | [ |
Manes.16G000700 | ATP酶WRNIP1 ATPase WRNIP1 | ||
Manes.16G000800 | 亮氨酸富集蛋白受体激酶 Leucine rich repeat receptor like kinase | ||
Manes.01G123000 | UDP-葡萄糖焦磷酸化酶 UTP-glucose pyrophosphorylase | [ | |
Manes.01G123800 | 蔗糖合酶 Sucrose synthase | ||
Manes.06G103600 | 双向糖转运蛋白SWEET5 Bidirectional sugar transporter SWEET5 | [ | |
Manes.15G011300 | RAG1激活蛋白 RAG1 activating protein | ||
Manes.16G109200 | 解螺旋酶 Helicase | ||
氢氰酸苷含量 HCN content | Manes.16G007900 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | [ |
CMD2抗性 CMD2 resistance | Manes.12G076200 | 过氧化物酶 Peroxidase | [ |
Manes.12G076300 | 过氧化物酶 Peroxidase | ||
Manes.14G058400 | TCP家族转录因子 TCP family transcriptional factor | ||
CBSD抗性 CBSD resistance | Manes.11G130500 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ |
Manes.11G130000 | 亮氨酸富集蛋白Leucine-rich repeat protein | ||
Manes.11G130200 | 触发因子分子伴侣 Trigger factor chaperone | ||
Manes.11G131100 | U-box蛋白33 U-box domain-containing protein 33 | ||
Manes.11G127100 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ | |
Cassava4.1_019379m | LysM结构域包含蛋白 LysM domain containing protein | ||
Cassava4.1_00037m | 3.5.2.9-5-羟脯氨酸酶 3.5.2.9-5-oxoprolinase enzyme | ||
CGM抗性CGM resistance | Manes.08G058000 | MYB转录因子106 MYB transcriptional factor 106 | [ |
Manes.08G045400 | MYB-like螺旋-转角-螺旋转录因子 MYB-like helix-turn-helix transcriptional factor | [ | |
Manes.08G058500 | C2H2-like锌指转录因子 C2H2-like Zn finger transcriptional factor | ||
Manes.08G048200 | C2H2-type锌指转录因子 C2H2-type Zn finger transcriptional factor | ||
Manes.08G048800 | 富含ARM重复域CCCH锌指转录因子 CCCH-type Zn finger transcriptional factor with ARM repeat domain | ||
Manes.08G034200 | Dof-type锌指转录因子 Dof-type Zn finger transcriptional factor | ||
Manes.08G046400 | K同源域CCCH-type锌指转录因子 K homology-domain-containing protein-/-Zn finger(CCCH-type)transcriptional factor | ||
Manes.08G041900 | 锌指转录因子8 Zn finger transcriptional factor 8 | ||
Manes.08G035100 | MADS-box转录因子AGAMOUS-like 80 MADS-box transcriptional factor AGAMOUS-like 80 | ||
Manes.08G043900 | 同源框亮氨酸拉链蛋白HOX11 Homeobox-leucine zipper protein HOX11 | ||
Manes.08G024700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G046700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G026900 | SAUR-like生长素响应因子 SAUR-like auxin-responsive factor | ||
Manes.08G026500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G053900 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G060500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G044000 | 表皮毛双折射相关蛋白 Trichome birefringence-like protein |
Table 1 Candidate genes for important traits using forward genetic approach in cassava
性状 Trait | 基因ID Gene ID | 基因注释 Gene annotation | 参考文献Reference |
---|---|---|---|
第一分支高度 The first branch height | Manes.09G041800 | 钙调素蛋白激酶20 Calcium-dependent protein kinase 20 | [ |
Manes.09G041900 | ABC-2型转运蛋白 ABC-2 type transporter protein | ||
Manes.02G212100 | 果胶酸酯裂解酶超家族蛋白 Pectin lyase-like superfamily protein | ||
Manes.02G212200 | 未知蛋白 Unknown protein | ||
Manes.03G061100 | 半胱氨酸氨基转移 Cysteine aminotransferase | ||
Manes.03G061200 | 四跨膜蛋白 Tetraspanin | ||
Manes.10G123100 | 跨膜蛋白9超家族成员1 Transmembrane 9 superfamily member 1 | ||
Manes.09G143900 | 未知蛋白 Unknown protein | ||
Manes.09G144000 | 未知蛋白 Unknown protein | ||
Manes.09G143800 | NAC转录因子87 NAC transcriptional factor 87 | ||
Manes.03G059800 | 未知蛋白 Unknown protein | ||
茎直径 Stem diameter | Manes.03G059800 | 未知蛋白 Unknown protein | [ |
Manes.03G170000 | 加工rRNA蛋白EFG1 rRNA-processing protein EFG1 | ||
Manes.03G169900 | α-甘露糖苷酶 alpha-mannosidase | ||
Manes.14G021000 | NADH脱氢酶-1-α-亚基复合体亚基5 NADH dehydrogenase-1-alpha-subcomplex subunit 5 | ||
Manes.14G020900 | SNARE-like蛋白 SNARE-like protein | ||
Manes.07G117800 | POTUNDIFOLIA蛋白 POTUNDIFOLIA protein | ||
Manes.07G117700 | 未知蛋白 Unknown protein | ||
Manes.07G007700 | 细胞色素b5域RLF Cytochrome b5 domain-containing protein RLF | ||
Manes.07G007800 | 环阿屯醇-碳-24-甲基转移酶 Cycloartenol-C-24-methyltransferase | ||
Manes.06G047300 | 未知蛋白 Unknown protein | ||
叶指宽 Lobular width | Manes.05G164600 | 核糖体蛋白S9 Ribosomal protein S9 | [ |
Manes.05G164500 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | ||
Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | ||
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | 膜蛋白PM19L Membrane protein PM19L | ||
Manes.10G312000 | OBF3蛋白 OBF3 protein | ||
叶指长 Lobular length | Manes.05G026500 | 葡萄糖-6-磷酸差相异构酶 Glucose-6-phosphate1-epimerase | [ |
Manes.05G026600 | 未知蛋白 Unknown protein | ||
Manes.05G026700 | G-box结合因子 G-box binding factor | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.18G018500 | 组氨酸超家族蛋白 Histone superfamily protein | ||
Manes.04G057300 | 醛氧化酶2 Aldehyde oxidase 2 | ||
叶柄长度 Petiole length | Manes.01G201900 | bHLH转录因子 bHLH transcriptional factor | [ |
Manes.01G202000 | 未知蛋白 Unknown protein | ||
叶指长宽比 Leaf aspect ratio | Manes.03G156800 | 线粒体编辑因子22 Mitochondrial editing factor 22 | [ |
Manes.03G156900 | MYB转录因子 MYB transcriptional factor | ||
Manes.03G157000 | AWPM-19-like家族蛋白 AWPM-19-like family protein | ||
Manes.06G034000 | 26S蛋白酶体调节亚基 26S proteasome regulatory subunit | ||
Manes.14G056200 | MA3蛋白 MA3 protein | ||
Manes.14G056100 | MA3蛋白 MA3 protein | ||
Manes.14G056300 | 未知蛋白 Unknown protein | ||
Manes.01G182700 | 蔗糖转化酶/果胶甲基转移酶抑制子 Invertase/pectin methylesterase inhibitor | ||
Manes.01G182800 | 未知蛋白 Unknown protein | ||
Manes.01G182900 | 甘氨酸富集蛋白 Glycine-rich protein | ||
Manes.03G184600 | P-loop-核苷三磷酸水解酶 P-loop-containing nucleoside triphosphate hydrolase | ||
Manes.03G186500 | α-水解酶 α-hydrolase | ||
Manes.10G031200 | OBF3蛋白 OBF3 protein | ||
叶形 The shape of leaf | Manes.15G136200 | KNOX1和KNOX2蛋白 KNOX1 and KNOX2 protein | [ |
叶柄颜色 Petiole color | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
绿叶 Green leaf | Manes.01G115400 | MYB转录因子6 MYB transcriptional factor 6 | [ |
干物质重量 Dry mass weight | Manes.02G192500 | 未知蛋白 Unknown protein | [ |
Manes.02G192600 | RING/U-box锌指家族蛋白 RING/U-box zinc finger family protein | ||
Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | ||
Manes.02G169800 | 未知蛋白 Unknown protein | ||
Manes.02G154700 | β-D-木糖苷酶7 Beta-D-xylosidase 7 | ||
Manes.02G154800 | 类钙神经素金属磷酸酯酶 Calcineurin-like metallo-phosphoesterase | ||
储藏根数目 Number of storage roots | Manes.05G125100 | 丝氨酸/苏氨酸蛋白激酶IRE1b Ser/Thr protein kinase IRE1b | [ |
Manes.05G125200 | 3-磷酸甘油醛脱氢酶B亚基 Glyceraldehyde-3-phosphate dehydrogenase B subunit | ||
Manes.05G125300 | 未知蛋白 Unknown protein | ||
Manes.04G057900 | 未知蛋白 Unknown protein | ||
Manes.04G058000 | 未知蛋白 Unknown protein | ||
Manes.09G099100 | 未知蛋白 Unknown protein | ||
Manes.09G099200 | 铜转运蛋白6 Copper transport protein 6 | ||
Manes.09G099300 | 热激蛋白HSP20-like Heat shock protein HSP20-like | ||
储藏根重量 Storage roots weight | Manes.02G169700 | 结瘤MtN3家族蛋白 Nodulin MtN3 family protein | [ |
Manes.02G169800 | 未知蛋白 Unknown protein | ||
收获指数 Harvest index | Manes.02G035900 | β-果糖基转移酶 Beta-fructofuranosidase | [ |
Manes.02G037700 | 4 glucan phosphorylase L isozyme | ||
淀粉含量 Starch content | Manes.13G023300 | β-1,4-氮-乙酰葡糖氨基转移酶 Beta-1,4-N-acetylglucosaminyl transferase | [ |
Manes.13G023400 | NAD(P)-氧化还原酶 NAD(P)-linked oxidoreductase | ||
Manes.05G177800 | 碳水化合物酯酶 Carbohydrate esterase | ||
总类胡萝卜素含量 Total carotenoid content | Manes.01G124200 | 八氢番茄红素酶2 Phytoene synthase 2 | [ |
Manes.05G051700 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | [ | |
Manes.15G102000 | β-胡萝卜素双加氧酶 Beta-carotene dioxgenese | ||
Manes.16G099600 | β-番茄红素环化酶 Lycopene beta cyclase | [ | |
Manes.09G008200 | ε-番茄红素E环化酶 Lycopene epsilon cyclase | ||
Manes.06G152200 | β-胡萝卜素羟化酶 Beta-carotene hydroxylase | ||
干物质含量 Dry mass content | Manes.14G007500 | 质体3-磷酸甘油醛脱氢酶2 Glyceraldehyde-3-phosphate dehydrogenase of plastid 2 | [ |
Manes.16G000700 | ATP酶WRNIP1 ATPase WRNIP1 | ||
Manes.16G000800 | 亮氨酸富集蛋白受体激酶 Leucine rich repeat receptor like kinase | ||
Manes.01G123000 | UDP-葡萄糖焦磷酸化酶 UTP-glucose pyrophosphorylase | [ | |
Manes.01G123800 | 蔗糖合酶 Sucrose synthase | ||
Manes.06G103600 | 双向糖转运蛋白SWEET5 Bidirectional sugar transporter SWEET5 | [ | |
Manes.15G011300 | RAG1激活蛋白 RAG1 activating protein | ||
Manes.16G109200 | 解螺旋酶 Helicase | ||
氢氰酸苷含量 HCN content | Manes.16G007900 | 多药物及有毒化合物外排转运蛋白 Multidrug and toxic compound extrusion | [ |
CMD2抗性 CMD2 resistance | Manes.12G076200 | 过氧化物酶 Peroxidase | [ |
Manes.12G076300 | 过氧化物酶 Peroxidase | ||
Manes.14G058400 | TCP家族转录因子 TCP family transcriptional factor | ||
CBSD抗性 CBSD resistance | Manes.11G130500 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ |
Manes.11G130000 | 亮氨酸富集蛋白Leucine-rich repeat protein | ||
Manes.11G130200 | 触发因子分子伴侣 Trigger factor chaperone | ||
Manes.11G131100 | U-box蛋白33 U-box domain-containing protein 33 | ||
Manes.11G127100 | 甘氨酸富集蛋白 Glycine-rich repeat protein | [ | |
Cassava4.1_019379m | LysM结构域包含蛋白 LysM domain containing protein | ||
Cassava4.1_00037m | 3.5.2.9-5-羟脯氨酸酶 3.5.2.9-5-oxoprolinase enzyme | ||
CGM抗性CGM resistance | Manes.08G058000 | MYB转录因子106 MYB transcriptional factor 106 | [ |
Manes.08G045400 | MYB-like螺旋-转角-螺旋转录因子 MYB-like helix-turn-helix transcriptional factor | [ | |
Manes.08G058500 | C2H2-like锌指转录因子 C2H2-like Zn finger transcriptional factor | ||
Manes.08G048200 | C2H2-type锌指转录因子 C2H2-type Zn finger transcriptional factor | ||
Manes.08G048800 | 富含ARM重复域CCCH锌指转录因子 CCCH-type Zn finger transcriptional factor with ARM repeat domain | ||
Manes.08G034200 | Dof-type锌指转录因子 Dof-type Zn finger transcriptional factor | ||
Manes.08G046400 | K同源域CCCH-type锌指转录因子 K homology-domain-containing protein-/-Zn finger(CCCH-type)transcriptional factor | ||
Manes.08G041900 | 锌指转录因子8 Zn finger transcriptional factor 8 | ||
Manes.08G035100 | MADS-box转录因子AGAMOUS-like 80 MADS-box transcriptional factor AGAMOUS-like 80 | ||
Manes.08G043900 | 同源框亮氨酸拉链蛋白HOX11 Homeobox-leucine zipper protein HOX11 | ||
Manes.08G024700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G046700 | 亮氨酸拉链转录因子 Basic leucine zipper transcriptional factor | ||
Manes.08G026900 | SAUR-like生长素响应因子 SAUR-like auxin-responsive factor | ||
Manes.08G026500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G053900 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G060500 | 三角状五肽重复蛋白 Pentatricopeptide repeat protein | ||
Manes.08G044000 | 表皮毛双折射相关蛋白 Trichome birefringence-like protein |
基因名称 Gene name | 功能 Function | 产物 Product | 生理机制 Physiological mechanism | 参考文献 Reference |
---|---|---|---|---|
MeCWINV3 | 负调控淀粉积累 Negative regulation of starch accumulation | 细胞壁转化酶 Cell wall invertases | 抑制叶片中蔗糖向块根转移Inhibited sugar export from leaves to storage roots | [ |
MeSBE1 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶1 Starch branch enzyme 1 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeSBE2 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶2 Starch branch enzyme 2 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeGBSSI | 正调控糯木薯形成 Positive regulation of waxy cassava | 颗粒结合淀粉合酶I Granule-bound starch synthase I | 合成蜡质淀粉 Synthesized waxy starch | [ |
MePSY2 | 正调控黄色薯肉形成 Positive regulation of yellow tuber | 八氢番茄红素酶2 Phytoene synthase 2 | 促进β-胡萝卜素合成 Promoted β-carotene accumulation | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 延缓PPD Delay PPD | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
HNL | 负调控块根中HCN含量 Negative regulation of HCN content in tuber | 羟基腈裂解酶Hydroxynitrile lyase | 促进丙酮氰醇分解 Promoted the decomposition of acetone cyanol | [ |
MeDREB1D | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低MDA含量,并可能强化了ROS清除 Decreased MDA content, and may enhance ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 可能强化了ROS清除 May enhance ROS scavenging | ||
MeDREB1A | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | ||
MeRAV5 | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低H2O2含量和促进木质素积累 Decreased H2O2 content and promote lignin accumulation | [ |
MeGRX360 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | [ |
MeGRX058 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX785 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX232 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX15 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低MDA含量 Decreased MDA content | [ |
MeGRX3 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 介导H2O2分配,引起ABA途径介导的气孔关闭 Mediated H2O2 homeostasis and stomatal closure | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 正调控抗旱 Positive regulation of drought resistance | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | 超氧化物歧化酶 Superoxide dismutase | 强化ROS清除 Enhanced ROS scavenging | ||
MeMYB2 | 负调控抗旱 Negative regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | [ |
负调控抗寒 Negative regulation of cold resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | ||
MeNCED1/5 | 正调控抗旱 Positive regulation of drought resistance | ABA合成酶 ABA synthetase | 促进ABA积累 Promoted ABA accumulation | [ |
MeCIPK23 | 正调控抗旱 Positive regulation of drought resistance | 蛋白激酶 CBL interact protein kinase | 促进ABA积累 Promoted ABA accumulation | |
MeWHY1/2/3 | 正调控抗旱 Positive regulation of drought resistance | Whirly转录因子 Whirly transcriptional factor | 促进ABA积累 Promoted ABA accumulation | |
MeWRKY20 | 正调控抗旱 Positive regulation of drought resistance | WRKY转录因子 WRKY transcriptional factor | 促进ABA积累 Promoted ABA accumulation | [ |
MeHSP90.9 | 正调控抗旱 Positive regulation of drought resistance | 热激蛋白 Heat shock protein | and decrease H2O2 content | |
MeSPL9 | 负调控抗旱 Negative regulation of drought resistance | SPL转录因子 SPL transcriptional factor | 抑制花青素、脯氨酸、可溶性糖和JA积累 Inhibited anthocyanin, proline, soluble sugar, and JA accumulation | [ |
MeSDD1 | 正调控抗旱 Positive regulation of drought resistance | 枯草杆菌蛋白酶 Subtilase | 降低气孔密度 Decreased stomatal density | [ |
MeSCL30 | 正调控抗旱 Positive regulation of drought resistance | 剪切因子 Spliceosomal component-like | 强化ROS清除 Enhanced ROS scavenging | [ |
MeRSZ21b | 正调控抗旱 Positive regulation of drought resistance | 丝氨酸/精氨酸剪接因子 Two-Zn-knuckles-type serine/arginine-rich protein | 调节ABA依赖途径的气孔关闭 Regulated stomatal closure of ABA-dependent pathway | [ |
DIR | 正调控抗旱 Positive regulation of drought resistance | 长链非编码RNA Long non-coding RNA | 增加脯氨酸含量 Increased proline content | [ |
MeIPT | 正调控抗旱 Positive regulation of drought resistance | 异戊烯基转移酶 Isopentenyl transferase | 延缓叶片衰老 Delayed leaf senescence | [ |
MeMYB108 | 正调控抗旱 Positive regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 降低叶片脱落率 Reduced leaf abscission rate | [ |
MeAPX2 (Co-expressed with MeCu/ZnSOD) | 正调控抗寒 Positive regulation of cold resistance | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 强化ROS清除 Enhanced ROS scavenging | [ |
MeTCP4 | 正调控抗寒 Positive regulation of drought resistance | TCP转录因子 TCP transcriptional factor | 强化ROS清除 Enhanced ROS scavenging | [ |
CRIR1 | 正调控抗寒 Positive regulation of cold resistance | 长链非编码RNA Long non-coding RNA | 增强非CBF途径的低温胁迫相关基因的翻译 Improved the translation efficiency of cold stress-related genes in a CBF-independent pathway | [ |
MeNPF4.5 | 正调控氮利用效率和产量 Positive regulation of nitrogen use efficiency and yield | 氮转运蛋白 Nitrate transporter | 可能促进了IAA积累 May promote IAA accumulation | [ |
MeWRKY79 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进褪黑素积累 Promoted melatonin accumulation | [ |
MeHsf20 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 促进褪黑素积累 Promoted melatonin accumulation | |
MeASMT2 | 正调控CBB抗性 Positive regulation of CBB resistance | 褪黑素合成酶 Melatonin synthetase | 促进褪黑素积累 Promoted melatonin accumulation | |
MeHsfs3 | 正调控CBB抗性 Positive regulation of CBB resistance | 热胁迫转录因子 Heat stress transcriptional factor | 促进SA的积累 Promoted SA accumulation | [ |
MeDELLA1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | DELLA蛋白 DELLA protein | 促进胼胝质沉积 Promoted callose depostion | [ |
MeLRR1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | NBS-LRR蛋白 NBS-LRR protein | 促进SA和ROS积累 Promoted SA and ROS accumulation | [ |
MeWRKY27 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | [ |
MeWRKY33 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | |
MeWRKY20 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进胼胝质增加,触发自噬信号途径 Promoted callose deposition, and triggered autophagy signaling pathway | [ |
MeHSP90.9 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 触发自噬信号途径 Triggered autophagy signaling Pathway | [ |
MeDNAJA2 | 正调控CBB抗性 Positive regulation of CBB resistance | DnaJ热激蛋白 DnaJ heat shock protein family | 促进SA积累 Promoted SA accumulation | [ |
MeHAM1 | 正调控CBB抗性 Positive regulation of CBB resistance | 组蛋白乙酰转移 Histone acetyltransferases | 促进SA积累 Promoted SA accumulation | |
MeLAR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 无花色素还原酶 Leucoanthocyanidin reductase | 促进单宁积累 Promoted tannin accumulation | [ |
MeANR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 花青素还原酶Anthocyanin reductase | 促进单宁积累 Promoted tannin accumulation |
Table 2 Cloned important traits genes and their functional characterization in cassava
基因名称 Gene name | 功能 Function | 产物 Product | 生理机制 Physiological mechanism | 参考文献 Reference |
---|---|---|---|---|
MeCWINV3 | 负调控淀粉积累 Negative regulation of starch accumulation | 细胞壁转化酶 Cell wall invertases | 抑制叶片中蔗糖向块根转移Inhibited sugar export from leaves to storage roots | [ |
MeSBE1 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶1 Starch branch enzyme 1 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeSBE2 | 负调控直链淀粉形成 Negative regulation of high-amylose production | 淀粉分支酶2 Starch branch enzyme 2 | 促进块根中支链淀粉链长分布 Promoted chain-length distribution of amylopectin | [ |
MeGBSSI | 正调控糯木薯形成 Positive regulation of waxy cassava | 颗粒结合淀粉合酶I Granule-bound starch synthase I | 合成蜡质淀粉 Synthesized waxy starch | [ |
MePSY2 | 正调控黄色薯肉形成 Positive regulation of yellow tuber | 八氢番茄红素酶2 Phytoene synthase 2 | 促进β-胡萝卜素合成 Promoted β-carotene accumulation | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 延缓PPD Delay PPD | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
HNL | 负调控块根中HCN含量 Negative regulation of HCN content in tuber | 羟基腈裂解酶Hydroxynitrile lyase | 促进丙酮氰醇分解 Promoted the decomposition of acetone cyanol | [ |
MeDREB1D | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低MDA含量,并可能强化了ROS清除 Decreased MDA content, and may enhance ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 可能强化了ROS清除 May enhance ROS scavenging | ||
MeDREB1A | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | [ |
正调控抗寒 Positive regulation of cold resistance | AP2转录因子 AP2 transcriptional factor | 增加脯氨酸含量 Increased proline content | ||
MeRAV5 | 正调控抗旱 Positive regulation of drought resistance | AP2转录因子 AP2 transcriptional factor | 降低H2O2含量和促进木质素积累 Decreased H2O2 content and promote lignin accumulation | [ |
MeGRX360 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | [ |
MeGRX058 | 正调控抗旱 Positive regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX785 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX232 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低H2O2含量 Decreased H2O2 content | |
MeGRX15 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 降低MDA含量 Decreased MDA content | [ |
MeGRX3 | 负调控抗旱 Negative regulation of drought resistance | CC型谷氧还蛋白 CC-type Glutaredoxins | 介导H2O2分配,引起ABA途径介导的气孔关闭 Mediated H2O2 homeostasis and stomatal closure | [ |
MeCAT1 (Co-expressed with MeCu/ZnSOD) | 正调控抗旱 Positive regulation of drought resistance | 过氧化氢酶 Catalase | 强化ROS清除 Enhanced ROS scavenging | [ |
正调控抗寒 Positive regulation of cold resistance | 超氧化物歧化酶 Superoxide dismutase | 强化ROS清除 Enhanced ROS scavenging | ||
MeMYB2 | 负调控抗旱 Negative regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | [ |
负调控抗寒 Negative regulation of cold resistance | MYB转录因子 MYB transcriptional factor | 调节ABA依赖途径 Regulated ABA-dependent pathway | ||
MeNCED1/5 | 正调控抗旱 Positive regulation of drought resistance | ABA合成酶 ABA synthetase | 促进ABA积累 Promoted ABA accumulation | [ |
MeCIPK23 | 正调控抗旱 Positive regulation of drought resistance | 蛋白激酶 CBL interact protein kinase | 促进ABA积累 Promoted ABA accumulation | |
MeWHY1/2/3 | 正调控抗旱 Positive regulation of drought resistance | Whirly转录因子 Whirly transcriptional factor | 促进ABA积累 Promoted ABA accumulation | |
MeWRKY20 | 正调控抗旱 Positive regulation of drought resistance | WRKY转录因子 WRKY transcriptional factor | 促进ABA积累 Promoted ABA accumulation | [ |
MeHSP90.9 | 正调控抗旱 Positive regulation of drought resistance | 热激蛋白 Heat shock protein | and decrease H2O2 content | |
MeSPL9 | 负调控抗旱 Negative regulation of drought resistance | SPL转录因子 SPL transcriptional factor | 抑制花青素、脯氨酸、可溶性糖和JA积累 Inhibited anthocyanin, proline, soluble sugar, and JA accumulation | [ |
MeSDD1 | 正调控抗旱 Positive regulation of drought resistance | 枯草杆菌蛋白酶 Subtilase | 降低气孔密度 Decreased stomatal density | [ |
MeSCL30 | 正调控抗旱 Positive regulation of drought resistance | 剪切因子 Spliceosomal component-like | 强化ROS清除 Enhanced ROS scavenging | [ |
MeRSZ21b | 正调控抗旱 Positive regulation of drought resistance | 丝氨酸/精氨酸剪接因子 Two-Zn-knuckles-type serine/arginine-rich protein | 调节ABA依赖途径的气孔关闭 Regulated stomatal closure of ABA-dependent pathway | [ |
DIR | 正调控抗旱 Positive regulation of drought resistance | 长链非编码RNA Long non-coding RNA | 增加脯氨酸含量 Increased proline content | [ |
MeIPT | 正调控抗旱 Positive regulation of drought resistance | 异戊烯基转移酶 Isopentenyl transferase | 延缓叶片衰老 Delayed leaf senescence | [ |
MeMYB108 | 正调控抗旱 Positive regulation of drought resistance | MYB转录因子 MYB transcriptional factor | 降低叶片脱落率 Reduced leaf abscission rate | [ |
MeAPX2 (Co-expressed with MeCu/ZnSOD) | 正调控抗寒 Positive regulation of cold resistance | 抗坏血酸过氧化物酶 Ascorbate peroxidase | 强化ROS清除 Enhanced ROS scavenging | [ |
MeTCP4 | 正调控抗寒 Positive regulation of drought resistance | TCP转录因子 TCP transcriptional factor | 强化ROS清除 Enhanced ROS scavenging | [ |
CRIR1 | 正调控抗寒 Positive regulation of cold resistance | 长链非编码RNA Long non-coding RNA | 增强非CBF途径的低温胁迫相关基因的翻译 Improved the translation efficiency of cold stress-related genes in a CBF-independent pathway | [ |
MeNPF4.5 | 正调控氮利用效率和产量 Positive regulation of nitrogen use efficiency and yield | 氮转运蛋白 Nitrate transporter | 可能促进了IAA积累 May promote IAA accumulation | [ |
MeWRKY79 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进褪黑素积累 Promoted melatonin accumulation | [ |
MeHsf20 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 促进褪黑素积累 Promoted melatonin accumulation | |
MeASMT2 | 正调控CBB抗性 Positive regulation of CBB resistance | 褪黑素合成酶 Melatonin synthetase | 促进褪黑素积累 Promoted melatonin accumulation | |
MeHsfs3 | 正调控CBB抗性 Positive regulation of CBB resistance | 热胁迫转录因子 Heat stress transcriptional factor | 促进SA的积累 Promoted SA accumulation | [ |
MeDELLA1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | DELLA蛋白 DELLA protein | 促进胼胝质沉积 Promoted callose depostion | [ |
MeLRR1/2/3/4 | 正调控CBB抗性 Positive regulation of CBB resistance | NBS-LRR蛋白 NBS-LRR protein | 促进SA和ROS积累 Promoted SA and ROS accumulation | [ |
MeWRKY27 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | [ |
MeWRKY33 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 未知 Unknown | |
MeWRKY20 | 正调控CBB抗性 Positive regulation of CBB resistance | WRKY转录因子 WRKY transcriptional factor | 促进胼胝质增加,触发自噬信号途径 Promoted callose deposition, and triggered autophagy signaling pathway | [ |
MeHSP90.9 | 正调控CBB抗性 Positive regulation of CBB resistance | 热激蛋白 Heat shock protein | 触发自噬信号途径 Triggered autophagy signaling Pathway | [ |
MeDNAJA2 | 正调控CBB抗性 Positive regulation of CBB resistance | DnaJ热激蛋白 DnaJ heat shock protein family | 促进SA积累 Promoted SA accumulation | [ |
MeHAM1 | 正调控CBB抗性 Positive regulation of CBB resistance | 组蛋白乙酰转移 Histone acetyltransferases | 促进SA积累 Promoted SA accumulation | |
MeLAR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 无花色素还原酶 Leucoanthocyanidin reductase | 促进单宁积累 Promoted tannin accumulation | [ |
MeANR | 正调控TMMS抗性 Positive regulation of TMMS resistance | 花青素还原酶Anthocyanin reductase | 促进单宁积累 Promoted tannin accumulation |
[1] |
严华兵, 叶剑秋, 李开绵. 中国木薯育种研究进展[J]. 中国农学通报, 2015, 31(15): 63-70.
doi: 10.11924/j.issn.1000-6850.casb14110159 |
Yan HB, Ye JQ, Li KM. Progress of cassava breeding in China. Chinese Agric Sci Bull, 2015, 31(15): 63-70. | |
[2] |
张鹏. 我国薯类基础研究的动态与展望[J]. 生物技术通报, 2015, 31(4): 65-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.002 |
Zhang P. Trends and prospect of basic research on root and tuber crops in China[J]. Biotechnol Bull, 2015, 31(4): 65-71.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.03.002 |
|
[3] |
El-Sharkawy MA. Cassava biology and physiology[J]. Plant Mol Biol, 2004, 56: 481-501.
doi: 10.1007/s11103-005-2270-7 pmid: 15669146 |
[4] | 蒋和平, 倪印峰, 朱福守. 中国木薯产业发展模式及对策建议[J]. 农业展望, 2014, 10(8): 41-48. |
Jiang HP, Ni YF, Zhu FS. Development mode and strategies of China's cassava industry[J]. Agric Outlook, 2014, 10(8): 41-48.
doi: 10.1177/003072707901000107 URL |
|
[5] | 王雷, 郭岩, 杨淑华. 非生物胁迫与环境适应性育种的现状及对策[J]. 中国科学: 生命科学, 2021, 51(10): 1424-1434. |
Wang L, GuoY, Yang SH. Designed breeding for adaptation of crops to environmental abiotic stresses[J]. Sci Sin Vitae, 2021, 51(10): 1424-1434.
doi: 10.1360/SSV-2021-0162 URL |
|
[6] | Burns A, Gleadow R, Cliff J, et al. Cassava: The drought, war and famine crop in a changing world[J]. Sustainability-Basel, 2010, 2(11): 3572-3607. |
[7] |
Wang WQ, Feng BX, Xiao JF, et al. Cassava genome from a wild ancestor to cultivated varieties[J]. Nat Commun, 2014, 5: 5110.
doi: 10.1038/ncomms6110 pmid: 25300236 |
[8] |
Bredeson JV, Lyons JB, Prochnik SE, et al. Sequencing wild and cultivated cassava and related species reveals extensive interspecific hybridization and genetic diversity[J]. Nat biotechnol, 2016, 34(5): 562-571.
doi: 10.1038/nbt.3535 pmid: 27088722 |
[9] |
Ramu P, Esuma W, Kawuki R, et al. Cassava haplotype map highlights fixation of deleterious mutations during clonal propagation[J]. Nat Genet, 2017, 49: 959-653.
doi: 10.1038/ng.3845 pmid: 28416819 |
[10] |
Hu W, Ji CM, Shi HT, et al. Allele-defined genome reveals biallelic differentiation during cassava evolution[J]. Mol Plant, 2021, 14(6): 851-854.
doi: 10.1016/j.molp.2021.04.009 pmid: 33866024 |
[11] |
Boonchanawiwat A, Sraphet S, Boonseng O, et al. QTL underlying plant and first branch height in cassava(Manihot esculenta Crantz)[J]. Field Crop Res, 2011, 121(3): 343-349.
doi: 10.1016/j.fcr.2010.12.022 URL |
[12] |
Zhang SK, Chen X, Lu C, et al. Genome-wide association studies of 11 agronomic traits in cassava(Manihot esculenta Crantz)[J]. Front Plant Sci, 2018, 9: 503.
doi: 10.3389/fpls.2018.00503 URL |
[13] |
Rabbi IY, Kayondo SI, Bauchet G, et al. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava[J]. Plant Mol Biol, 2022, 109: 195-213.
doi: 10.1007/s11103-020-01038-3 |
[14] |
Welsch R, Arango J, Bär C, et al. Provitamin A accumulation in cassava(Manihot esculenta)roots driven by a single nucleotide polymorphism in a phytoene synthase gene[J]. Plant Cell, 2010, 22(10): 3348-3356.
doi: 10.1105/tpc.110.077560 URL |
[15] |
Esuma W, Herselman L, Labuschagne MT, et al. Genome wide association mapping of provitamin A carotenoid content in cassava[J]. Euphytica, 2016, 212: 97-110.
doi: 10.1007/s10681-016-1772-5 |
[16] |
Udoh LI, Gedil M, Parkes EY, et al. Candidate gene sequencing and validation of SNP markers linked to carotenoid content in cassava(Manihot esculenta Crantz)[J]. Mol Breed, 2017, 37(10): 123.
doi: 10.1007/s11032-017-0718-5 URL |
[17] | Rabbi IY, Udoh LI, Wolfe M, et al. Genome-wide association mapping of correlated trait in cassava: dry matter and total carotenoid content[J]. Plant Genome, 2017, 10(3): 1-4. |
[18] |
Ogbonna AC, Luciano Rogerio Braatz de Andrade, Rabbi IY, et al. Large-scale genome-wide association study, using historical data, identifies conserved genetic architecture of cyanogenic glucoside content in cassava(Manihot esculenta Crantz)root[J]. Plant J, 2021, 105(3): 754-770.
doi: 10.1111/tpj.v105.3 URL |
[19] |
Kayondo SI, Carpio DPD, Lozano R, et al. Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta[J]. Sci Rep, 2018, 8(1): 1549.
doi: 10.1038/s41598-018-19696-1 pmid: 29367617 |
[20] |
Kawuki RS, Kaweesi T, Esuma W, et al. Eleven years of breeding efforts to combat cassava brown streak disease[J]. Breed Sci, 2016, 66(4): 560-571.
doi: 10.1270/jsbbs.16005 URL |
[21] |
Ezenwaka L, Carpio DPD, Jannink J, et al. Genome-wide association study of resistance to cassava green mite pest and related traits in cassava[J]. Crop Sci, 2018, 58(5): 1907-1918.
doi: 10.2135/cropsci2018.01.0024 URL |
[22] |
Chavarriaga-Aguirre P, Brand A, Medina A, et al. The potential of using biotechnology to improve cassava: a review[J]. In Vitro Cell Dev Biol-Plant, 2016, 52: 461-478.
doi: 10.1007/s11627-016-9776-3 URL |
[23] | FAO. Food outlook-biannual report on global food markets[J]. Rome. Licence: CC BY-NC-SA 3.0 IGO. 2019. |
[24] | 张鹏, 杨俊, 周文智, 等. 能源木薯高淀粉抗逆分子育种研究进展与展望[J]. 生命科学, 2014, 26(5): 465-473. |
Zhang P, Yang J, Zhou WZ, et al. Progress and perspective of cassava molecular breeding for bioenergy development[J]. Chinese Bull Life Sci, 2014, 26(5): 465-473. | |
[25] |
Yan W, Wu XY, Li YN, et al. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink[J]. Front Plant Sci, 2019, 10: 541.
doi: 10.3389/fpls.2019.00541 pmid: 31114601 |
[26] |
Utsumi Y, Utsumi C, Tanaka M, et al. Suppressed expression of starch branching enzyme 1 and 2 increases resistant starch and amylose content and modifies amylopectin structure in cassava[J]. Plant Mol Biol, 2022, 108: 413-427.
doi: 10.1007/s11103-021-01209-w |
[27] |
Aiemnaka P, Wongkaew A, Chanthaworn J, et al. Molecular characterization of a spontaneous waxy starch mutation in cassava[J]. Crop Sci, 2007, 52(5): 2121-2130.
doi: 10.2135/cropsci2012.01.0058 URL |
[28] |
Xu J, Duan XG, Yang J, et al. Enhanced reactive oxygen species scavenging by over-production of superoxide dismutase and catalase delays post-harvest physiological deterioration of cassava storage roots[J]. Plant Physiol, 2013, 161(3): 1517-1528.
doi: 10.1104/pp.112.212803 URL |
[29] |
Narayanan NN, Ihemere U, Ellery C, et al. Overexpression of hydroxynitrile lyase in cassava roots elevates protein and free amino acids while reducing residual cyanogen levels[J]. PLoS One, 2011, 6: e21996.
doi: 10.1371/journal.pone.0021996 URL |
[30] |
Yang YL, Liao WB, Yu XL, et al. Overexpression of MeDREB1D confers tolerance to both drought and cold stresses in transgenic Arabidopsis[J]. Acta Physiol Plant, 2016, 38: 243.
doi: 10.1007/s11738-016-2258-8 URL |
[31] |
An D, Ma QX, Wang HX, et al. Cassava C-repeat binding factor 1 gene responds to low temperature and enhances cold tolerance when overexpressed in Arabidopsis and cassava[J]. Plant Mol Biol, 2017, 94(1-2): 109-124.
doi: 10.1007/s11103-017-0596-6 URL |
[32] |
Yan Y, Wang P, Lu Y, et al. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation[J]. Plant J, 2021, 107(3): 847-860.
doi: 10.1111/tpj.v107.3 URL |
[33] | 杨仪伶. 木薯CC-type MeGRXs及MeDREB1D基因抗旱功能研究[D]. 武汉: 华中农业大学, 2016. |
Yang YL. Funtional analysis of CC-type MeGRXs and MeDREB1D genes from cassava in drought tolerance[D]. Wuhan: Huazhong Agricultural University, 2016. | |
[34] |
Ruan MB, Yang YL, Li KM, et al. Identification and characterization of drought-responsive CC-type glutaredoxins from cassava cultivars reveals their involvement in ABA signaling[J]. BMC Plant Biol, 2018, 18(1): 329.
doi: 10.1186/s12870-018-1528-6 |
[35] |
Guo X, Yu XL, Xu ZY, et al. CC-type glutaredoxin, MeGRXC3, associates with catalases and negatively regulates drought tolerance in cassava(Manihot esculenta Crantz)[J]. Plant Biotechnol J, 2022, 20(12): 2389-2405.
doi: 10.1111/pbi.v20.12 URL |
[36] |
Xu J, Duan XG, Yang J, et al. Coupled expression of Cu/Zn superoxide dismutase and catalase in cassava improves tolerance against cold and drought stresses[J]. Plant Signal Behav, 2013, 8(6): e24525.
doi: 10.4161/psb.24525 URL |
[37] |
Ruan MB, Guo XG, Wang B, et al. Genome-wide characterization and expression analysis enables identification of abiotic stress-responsive MYB transcription factors in cassava(Manihot esculenta)[J]. J Exp Bot, 2017, 68(13): 3657-3672.
doi: 10.1093/jxb/erx202 URL |
[38] |
Yan Y, Liu W, Wei YX, et al. MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava[J]. Plant Biotechnol J, 2020, 18(7): 1504-1506.
doi: 10.1111/pbi.13321 pmid: 31858710 |
[39] |
Wei YX, Liu W, Hu W, et al. The chaperone MeHSP90 recruits MeWRKY20 and MeCatalase1 to regulate drought stress resistance in cassava[J]. New Phytol, 2020, 226(2): 476-491.
doi: 10.1111/nph.16346 pmid: 31782811 |
[40] |
Li SX, Cheng ZH, Li ZB, et al. MeSPL9 attenuates drought resistance by regulating JA signaling and protectant metabolite contents in cassava[J]. Theor Appl Genet, 2021, 135(3): 817-832.
doi: 10.1007/s00122-021-04000-z |
[41] |
肖亮, 鲍茹雪, 曹升, 等. 木薯枯草杆菌蛋白酶家族鉴定及MeSDD1的功能分析[J]. 核农学报, 2022, 36(7): 1308-1317.
doi: 10.11869/j.issn.100-8551.2022.07.1308 |
Xiao L, Bao RX, Cao S, et al. Identification of cassava SBT gene family and function analysis of MeSDD1[J]. J Nucl Agr Sci, 2022, 36(7): 1308-1317. | |
[42] |
Weng X, Zhou XX, Xie SQ, et al. Identification of cassava alternative splicing-related genes and functional characterization of MeSCL30 involvement in drought stress[J]. Plant Physiol Biochem, 2021, 160: 130-142.
doi: 10.1016/j.plaphy.2021.01.016 URL |
[43] |
Chen YH, Weng X, Zhou XX, et al. Overexpression of cassava RSZ21b enhances drought tolerance in Arabidopsis[J]. J Plant Physiol, 2022, 268: 153574.
doi: 10.1016/j.jplph.2021.153574 URL |
[44] |
Dong SM, Xiao L, Li ZB, et al. A novel long non-coding RNA, DIR, increases drought tolerance in cassava by modifying stress-related gene expression[J]. J Integr Agr, 2022, 21(9): 2588-2602.
doi: 10.1016/j.jia.2022.07.022 URL |
[45] |
Zhang P, Wang WQ, Zhang GL, et al. Senescence inducible expression of isopentenyl transferase extends leaf life, increases drought stress resistance and alters cytokinin metabolism in cassava[J]. J Integr Plant Biol, 2010, 52(7): 653-69.
doi: 10.1111/j.1744-7909.2010.00956.x |
[46] |
Wang B, Li S, Zou L, et al. Natural variation MeMYB108 associated with tolerance to stress-induced leaf abscission linked to enhanced protection against reactive oxygen species in cassava[J]. Plant Cell Rep, 2022, 41(7): 1573-1587.
doi: 10.1007/s00299-022-02879-6 |
[47] |
Xu J, Yang J, Duan XG, et al. Increased expression of native cytosolic Cu/Zn superoxide dismutase and ascorbate peroxidase improves tolerance to oxidative and chilling stresses in cassava(Manihot esculenta Crantz)[J]. BMC Plant Biol, 2014, 14(1): 208.
doi: 10.1186/s12870-014-0208-4 URL |
[48] |
Cheng ZH, Lei N, Li SX, et al. The regulatory effects of MeTCP4 on cold stress tolerance in Arabidopsis thaliana: A transcriptome analysis[J]. Plant Physiol Biochem, 2019, 138: 9-16.
doi: 10.1016/j.plaphy.2019.02.015 URL |
[49] |
Li SX, Cheng ZH, Dong SM, et al. Global identification of full-length cassava lncRNAs unveils the role of cold-responsive intergenic lncRNA 1 in cold stress response[J]. Plant Cell Environ, 2022, 45(2): 412-426.
doi: 10.1111/pce.v45.2 URL |
[50] |
Liang QY, Dong MM, Gu MH, et al. MeNPF4.5 improves cassava nitrogene use efficiency and yield by regulating nitrogen uptake and allocation[J]. Front Plant Sci, 2022, 13: 866855.
doi: 10.3389/fpls.2022.866855 URL |
[51] |
Wei YX, Liu GY, Bai YJ, et al. Two transcriptional activators of N-acetylserotonin O-methyltransferase 2 and melatonin biosynthesis in cassava[J]. J Exp Bot, 2017, 68(17): 4997-5006.
doi: 10.1093/jxb/erx305 pmid: 28992113 |
[52] |
Wei YX, Liu GY, Chang YL, et al. Heat shock transcription factor 3 regulates plant immune response through modulation of salicylic acid accumulation and signalling in cassava[J]. Mol Plant Pathol, 2018, 19(10): 2209-2220.
doi: 10.1111/mpp.12691 pmid: 29660238 |
[53] |
Li XL, Liu W, Li B, et al. Identification and functional analysis of cassava DELLA proteins in plant disease resistance against cassava bacterial blight[J]. Plant Physiol Biochem, 2018, 124: 70-76.
doi: 10.1016/j.plaphy.2017.12.022 URL |
[54] |
Zhang H, Ye Z, Liu ZX, et al. The cassava NBS-LRR genes confer resistance to cassava bacterial blight[J]. Front Plant Sci, 2022, 13: 790140.
doi: 10.3389/fpls.2022.790140 URL |
[55] |
Zhu SS, Fan RC, Xiong X, et al. MeWRKY IIas, subfamily genes of WRKY transcription factors from cassava, play an important role in disease resistance[J]. Front Plant Sci, 2022, 13: 890555.
doi: 10.3389/fpls.2022.890555 URL |
[56] |
Yan Y, Wang P, He CZ, et al. MeWRKY20 and its interacting and activating autophagy-related protein 8(MeATG8)regulate plant disease resistance in cassava[J]. Biochem Bioph Res Co, 2017, 494(1-2): 20-26.
doi: S0006-291X(17)32070-3 pmid: 29056507 |
[57] |
Wei YX, Zeng HQ, Liu W, et al. Autophagy-related genes serve as heat shock protein 90 co-chaperones in disease resistance against cassava bacterial blight[J]. Plant J, 2021, 107(3): 925-937.
doi: 10.1111/tpj.v107.3 URL |
[58] |
Zhao HP, Ge ZY, Zhou MM, et al. Histone acetyltransferase HAM1 interacts with molecular chaperone DNAJA2 and confers immune responses through salicylic acid biosynthetic genes in cassava[J]. Plant Cell Environ, 2022. doi.org/10.1111/pce.14501.
doi: doi.org/10.1111/pce.14501 |
[59] |
Chen Q, Liang X, Wu CL, et al. Overexpression of leucoanthocyanidin reductase or anthocyanidin reductase elevates tannins content and confers cassava resistance to two-spotted spider mite[J]. Front Plant Sci, 2022, 13: 994866.
doi: 10.3389/fpls.2022.994866 URL |
[60] |
Noh SA, Lee HS, Huh EJ, et al. SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato(Ipomoea batatas)[J]. J Exp Bot, 2010, 61(5): 1337-49.
doi: 10.1093/jxb/erp399 URL |
[61] |
Noh SA, Lee HS, Kim YS, et al. Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato[J]. J Exp Bot, 2013, 64(1): 129-42.
doi: 10.1093/jxb/ers236 URL |
[62] |
Luo S, Ma QX, Zhong YY, et al. Editing of the starch branching enzyme gene SBE2 generates high-amylose storage roots in cassava[J]. Plant Mol Biol, 2022, 108:429-442.
doi: 10.1007/s11103-021-01215-y |
[63] |
Koehorst-van Putten HJJ, Sudarmonowati E, Herman M, et al. Field testing and exploitation of genetically modified cassava with low-amylose or amylose-free starch in Indonesia[J]. Transgenic Res, 2012, 21(1): 39-50.
doi: 10.1007/s11248-011-9507-9 pmid: 21465166 |
[64] |
Zhao SS, Dufour D, Sánchez T, et al. Development of waxy cassava with different biological and physico-chemical characteristics of starches for industrial applications[J]. Biotechnol Bioeng, 2011, 108(8): 1925-1935.
doi: 10.1002/bit.23120 URL |
[65] |
Koehorst-van Putten HJJ, Wolters AM, Pereira-Bertram IM, et al. Cloning and characterization of a tuberous root specific promoter from cassava(Manihot esculenta Crantz)[J]. Planta, 2012, 236(6): 1955-65.
doi: 10.1007/s00425-012-1796-6 pmid: 23132522 |
[66] | 尚小红, 周慧文, 严华兵, 等. 木薯块根肉质颜色基因CAPS标记的开发与验证[J]. 分子植物育种, 2018, 16(3): 873-879. |
Shang XH, Zhou HW, Yan HB, et al. Development and verification of a CAPS marker for color gene in cassava tuber[J]. Mol Plant Breed, 2018, 16(3): 873-879. | |
[67] | 朴朴森, 尚小红, 许丰收, 等. 基于PSY2基因单碱基突变的薯肉颜色分子标记开发与利用[J]. 核农学报, 2022, 36(1): 0034-0041. |
Phyu PT, Shang XH, Xu FS, et al. Development and utilization of cassava root color marker basing on a single nucleotide mutation in PSY2 gene[J]. J Nuc Agr Sci, 2022, 36(1): 0034-0041. | |
[68] |
Bechof A, Tomlins K, Fliedel G, et al. Cassava traits and end-user preference: relating traits to consumer liking, sensory perception, and genetics[J]. Crit Rev Food Sci Nutr, 2018, 58(4): 547-567.
doi: 10.1080/10408398.2016.1202888 pmid: 27494196 |
[69] |
Kizito EB, Ann-Christin R-W, Thomas E, et al. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava(Manihot esculenta Crantz)roots[J]. Hereditas, 2007, 144(4): 129-136.
doi: 10.1111/j.2007.0018-0661.01975.x URL |
[70] |
Ceballos H, Morante N, Sánchez T, et al. Rapid cycling recurrent selection for increased carotenoids content in cassava roots[J]. Crop Sci, 2013, 53: 2342-2351.
doi: 10.2135/cropsci2013.02.0123 URL |
[71] | Ceballos H, Davrieux F, Talsma EF, et al. Carotenoids in cassava roots[M]. In: Carotenoids. InTech, Rijeka. 2017. |
[72] |
Njoku DN, Gracen VE, Ofei SK, et al. Parent-ofspring regression analysis for total carotenoids and some agronomic traits in cassava[J]. Euphytica, 2015, 206: 657-666.
doi: 10.1007/s10681-015-1482-4 URL |
[73] |
Okeke UG, Akdemir D, Rabbi I, et al. Regional heritability mapping provides insights into dry matter content in African white and yellow cassava populations[J]. Plant Genome, 2018, 11(1): 170050.
doi: 10.3835/plantgenome2017.06.0050 URL |
[74] |
Reilly K, Bernal D, Cortes DF, et al. Towards identifying the full set of genes expressed during cassava post-harvest physiological deterioration[J]. Plant Mol Biol, 2007, 64(1-2): 187-203.
pmid: 17318318 |
[75] |
Owiti J, Grossmann J, Gehrig P, et al. iTRAQ-based analysis of changes in the cassava root proteome reveals pathways associated with post-harvest physiological deterioration[J]. Plant J, 2011, 67(1): 145-156.
doi: 10.1111/tpj.2011.67.issue-1 URL |
[76] | Andersen MD, Busk PK, Svendsen I, et al. Cytochromes P-450 from cassava(Manihot esculenta Crantz)catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin[J]. Plant Physiol, 2000, 275(3): 1966-1975. |
[77] |
Jørgensen K, Bak S, Busk PK, et al. Cassava plants with a depleted cyanogenic glucoside content in leaves and tubers. Distribution of cyanogenic glucosides, their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology[J]. Plant Physiol, 2005, 139(1): 363-374.
pmid: 16126856 |
[78] |
Kannangara R, Motawia MS, Hansen NK, et al. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava[J]. Plant J, 2011, 68(2): 287-301.
doi: 10.1111/j.1365-313X.2011.04695.x URL |
[79] |
Whankaew S, Poopear K, Kanjanawattanawong S, et al. A genome scan for quantitative trait loci affecting cyanogenic potential of cassava root in an outbred population[J]. BMC Genomics, 2011, 12: 266.
doi: 10.1186/1471-2164-12-266 pmid: 21609492 |
[80] | Santisopasri V, Kurotjanawong K, Chotineeranat S, et al. Impact of water stress on yield and quality of cassava starch[J]. Ind Crops Prod, 2001, 13(2): 129. |
[81] |
Vandegeer R, Miller RE, Bain M, et al. Drought adversely affects tuber development and nutritional quality of the staple crop cassava(Manihot esculenta Crantz)[J]. Funct Plant Biol, 2013, 40(2): 195-200.
doi: 10.1071/FP12179 pmid: 32481099 |
[82] |
Ibrahim OR, Opabode JT. Pre-treatment of two contrasting water-stressed genotypes of cassava(Manihot esculenta Crantz)with ascorbic acid. I. Growth, physiological and antioxidant responses[J]. Physiol Mol Biol Plants, 2019, 25: 1385-1394.
doi: 10.1007/s12298-019-00709-w |
[83] | Okogbenin E, Setter TL, Ferguson M, et al. Phenotypic approaches to drought in cassava: review[J]. Front Physiol, 2013, 4(93): 93. |
[84] |
Alves AA, Setter TL. Response of cassava to water deficit: leaf area growth and abscisic acid[J]. Crop Sci, 2000, 40(1): 131-137.
doi: 10.2135/cropsci2000.401131x URL |
[85] | Alves AA, Setter TL. Response of cassava leaf area expansion to water deficit: cell proliferation, cell expansion and delayed development[J]. Ann Bot, 2004, 94(4): 605613. |
[86] |
Devi B, Kumar MN, Chutia M, et al. Abiotic and biotic stress challenges of cassava in changing climate and strategies to overcome: A review[J]. Sci Hortic-amsterdam, 2022, 305: 111432.
doi: 10.1016/j.scienta.2022.111432 URL |
[87] |
Ziemann M, Bhave M, Zachgo S. Origin and diversfication of land plant CC-type glutaredoxins[J]. Genome Biol Evol, 2009, 1: 265-77.
doi: 10.1093/gbe/evp025 pmid: 20333196 |
[88] |
Meyer Y, Belin C, Delorme-Hinoux V, et al. Thioredoxin and glutaredoxin systems in plants: molecular mechanisms, cross talks, and functional significance[J]. Antioxid Redox Signal, 2012, 17(8): 1124-1160.
doi: 10.1089/ars.2011.4327 URL |
[89] |
An D, Yang J, Zhang P. Transcriptome profiling of low temperature-treated cassava apical shoots showed dynamic responses of tropical plant to cold stress[J]. BMC Genomics, 2012, 13: 64.
doi: 10.1186/1471-2164-13-64 pmid: 22321773 |
[90] |
Lassaletta L, Billen G, Grizzetti B, et al. 50 year trends in nitrogen use efficiency of world cropping systems: the relationship between yield and nitrogen input to cropland[J]. Environ Res Lett, 2014, 9(10): 105011.
doi: 10.1088/1748-9326/9/10/105011 URL |
[91] |
Li H, Hu B, Chu CC. Nitrogen use efficiency in crops: lessons from Arabidopsis and rice[J]. J Exp Bot, 2017, 68(10): 2477-2488.
doi: 10.1093/jxb/erx101 pmid: 28419301 |
[92] |
Kyriacou MC, Leskovar DI, Colla G, et al. Watermelon and melon fruit quality: the genotypic and agro-environmental factors implicated[J]. Sci Hortic-amsterdam, 2018, 234: 393-408.
doi: 10.1016/j.scienta.2018.01.032 URL |
[93] |
Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency[J]. Sci China Life Sci, 2020, 63(5): 635-674.
doi: 10.1007/s11427-020-1683-x pmid: 32246404 |
[94] |
Jenrich R, Trompetter I, Bak S, et al. Evolution of heteromeric nitrilase complexes in Poaceae with new functions in nitrile metabolism[J]. Proc Natl Acad Sci USA, 2007, 104(47): 18848-18853.
doi: 10.1073/pnas.0709315104 pmid: 18003897 |
[95] |
Wang Q, Nian JQ, Xie XZ, et al. Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice[J]. Nat Commun, 2018, 9: 735.
doi: 10.1038/s41467-017-02781-w |
[96] |
Liu KH, Liu MH, Lin ZW, et al. NIN-like protein 7 transcription factor is a plant nitrate sensor[J]. Science, 2022, 377(6613): 1419-1425.
doi: 10.1126/science.add1104 URL |
[97] |
Liu YQ, Wang HR, Jiang ZM, et al. Genomic basis of geographical adaptation to soil nitrogen in rice[J]. Nature, 2021, 590: 600-605.
doi: 10.1038/s41586-020-03091-w |
[98] |
McCallum EJ, Anjanappa RB, Gruissem W. Tackling agriculturally relevant diseases in the staple crop cassava(Manihot esculenta)[J]. Curr Opin Plant Biol, 2017, 38: 50-58.
doi: S1369-5266(17)30033-X pmid: 28477536 |
[99] |
Abarshi MM, Mohammed IU, Jeremiah SC, et al. Multiplex RT-PCR assays for the simultaneous detection of both RNA and DNA viruses infecting cassava and the common occurrence of mixed infections by two cassava brown streak viruses in East Africa[J]. J Virol Methods, 2012, 179(1): 176-84.
doi: 10.1016/j.jviromet.2011.10.020 pmid: 22080852 |
[100] |
Legg JP, Jeremiah SC, Obiero HM, et al. Comparing the regional epidemiology of the cassava mosaic and cassava brown streak virus pandemics in Africa[J]. Virus Res, 2011, 159(2): 161-70.
doi: 10.1016/j.virusres.2011.04.018 pmid: 21549776 |
[101] |
Rwegasira GM, Momanyi G, Rey ME, et al. Widespread occurrence and diversity of cassava brown streak virus(Potyviridae: Ipomovirus)in Tanzania[J]. Phytopathology, 2011, 101(10): 1159-67.
doi: 10.1094/PHYTO-11-10-0297 pmid: 21916624 |
[102] | Mware B, Narla R, Amata R, et al. Efficiency of cassava brown streak virus transmission by two whitefly species in coastal Kenya[J]. J Gen Mol Virol, 2009, 1(4): 040-045. |
[103] |
Patil BL, Legg JP, Kanju E, et al. Cassava brown streak disease: A threat to food security in Africa[J]. J Gen Virol, 2015, 96(Pt_5): 956-968.
doi: 10.1099/jgv.0.000014 URL |
[104] |
Tize I, Fotso AK, Nukenine EN, et al. New cassava germplasm for food and nutritional security in Central Africa[J]. Sci Rep, 2021, 11(1): 1-12.
doi: 10.1038/s41598-020-79139-8 |
[105] |
Akano AO, Dixon AGO, Mba C, et al. Genetic mapping of a dominant gene conferring resistance to cassava mosaic disease[J]. Theor Appl Genet, 2002, 105(4): 521-525.
doi: 10.1007/s00122-002-0891-7 pmid: 12582500 |
[106] |
Okogbenin E, Porto M, Eges C. Marker-assisted introgression of resistance to cassava mosaic disease into Latin American germplasm for the genetic improvement of cassava in Africa[J]. Crop Sci, 2007, 47(5): 1895-1904.
doi: 10.2135/cropsci2006.10.0688 URL |
[107] | Mohan C, Shanmugasundaram P, Maheswaran M, et al. Mapping new genetic markers associated with CMD resistance in cassava(Manihot esculenta Crantz)using simple sequence repeat markers[J]. J Agr Sci, 2013, 5(5): 57-65. |
[108] |
Rabbi IY, Hamblin MT, Gedil M, et al. Genetic mapping using genotyping-by-sequencing in the clonally propagated cassava[J]. Crop Sci, 2014, 54(4): 1384-1396.
doi: 10.2135/cropsci2013.07.0482 URL |
[109] |
Rabbi IY, Hamblin MT, Kumar PL, et al. High-resolution mapping of resistance to cassava mosaic geminiviruses in cassava using genotyping-by-sequencing and its implications for breeding[J]. Virus Res, 2014, 186: 87-96.
doi: 10.1016/j.virusres.2013.12.028 pmid: 24389096 |
[110] |
Wolfe MD, Rabbi IY, Egesi C, et al. Genome-wide association and prediction reveals genetic architecture of cassava mosaic disease resistance and prospects for rapid genetic improvement[J]. Plant Genome, 2016, 9(2). DOI: 10.3835/plantgenome2015.11.0118.
doi: 10.3835/plantgenome2015.11.0118 |
[111] | Thuy CTL, Lopez-Laballe LAB, Vu NA, et al. Identifying new resistance to cassava mosaic disease and validating markers for the CMD2 locus[J]. Agric, 2021, 11(9): 829. |
[112] | Beyene G, Chauhan RD, Wagaba H, et al. Loss of CMD2-mediated resistance to cassava mosaic disease in plants regenerated through somatic embryogenesis[J]. Mol plantpathol, 2016, 17(7): 1095-1110. |
[113] |
Okogbenin E, Egesi CN, Olasanmi B, et al. Molecular marker analysis and validation of resistance to cassava mosaic disease in elite cassava genotypes in Nigeria[J]. Crop Sci, 2012, 52(6): 2576-2586.
doi: 10.2135/cropsci2011.11.0586 URL |
[114] |
Graziosi I, Minato N, Alvarez E, et al. Emerging pests and diseases of South-east Asian cassava: a comprehensive evaluation of geographic priorities, management options and research needs[J]. Pest Manag Sci, 2016, 72: 1071-1089.
doi: 10.1002/ps.4250 pmid: 26853194 |
[115] |
Alleyne AT, Gilkes JM, Briggs G. Early detection of super-elongation disease in Manihot esculenta Crantz(cassava)using molecular markers for gibberellic acid biosynthesis[J]. Eur J Plant Pathol, 2015, 141: 27-34.
doi: 10.1007/s10658-014-0517-3 URL |
[116] |
Bandyopadhyay R, Mwangi M, Aigbe SO, et al. Fusarium species from the cassava root rot complex in West Africa[J]. Phytopathol, 2006, 96(6): 673-676.
doi: 10.1094/PHYTO-96-0673 URL |
[117] |
Barros JA, Medeiros EV, Notaro KA, et al. Different cover promote sandy soil suppressive-ness to root rot disease of cassava caused by Fusarium solani[J]. Afr J Microbiol Res, 2014, 8(10): 967-973.
doi: 10.5897/AJMR URL |
[118] |
Brito AC, Oliveira SAS, Oliveira EJ. Genome-wide association study for resistance to cassava root rot[J]. J Agr Sci, 2017, 155(9): 1424-1441.
doi: 10.1017/S0021859617000612 URL |
[119] |
Chen Q, Liang X, Wu CL, et al. Density threshold-based acaricide application for the two-spotted spider mite Tetranychus urticae on cassava: from laboratory to the field[J]. Pest Manag Sci, 2019, 75(10): 2634-2641.
doi: 10.1002/ps.5366 pmid: 30706630 |
[120] | Yaninek S, Hanna R. Cassava green mite in Africa: A unique example of successful classical biological control of a mite pest on a continental scale[M]// Neuenschwander P, et al. Biological control in IPM systems in Africa. CABI, Wallingford, UK: CABI Publishing, 2003: 61-76. |
[121] |
Ceballos H, Sánchez T, Denyer K, et al. Induction and identification of a small-granule, high-amylose mutant in cassava(Manihot esculenta Crantz)[J]. J Agric Food Chem, 2008, 56(16): 7215-7222.
doi: 10.1021/jf800603p URL |
[122] |
Ceballos H, Sánchez T, Morante M, et al. Discovery of an amylose-free starch mutant in cassava(Manihot esculenta Crantz)[J]. J Agr Food Chem, 2007, 55(18): 7469-7476.
pmid: 17696358 |
[123] |
Rojas MC, Pérez JC, Ceballos H, et al. Analysis of inbreeding depression in eight S1 cassava families[J]. Crop Sci, 2009, 49(2): 543-548.
doi: 10.2135/cropsci2008.07.0419 URL |
[124] | Kawuki RS, Nuwamanya E, Labuschagne MT, et al. Segregation of selected agronomic traits in six S1 cassava families[J]. J Plant Breed Crop Sci, 2011, 3(8): 154-160. |
[125] |
Freitas J, Santos V, Oliveira. Inbreeding depression in cassava for productive traits[J]. Euphytica, 2016, 209: 137-145.
doi: 10.1007/s10681-016-1649-7 URL |
[126] | Tadeo K, Vincent K, Yona B, et al. Inbreeding enhances field resistance to cassava brown streak viruses[J]. J Plant Breed Crop Sci, 2016, 88(8): 138-149. |
[127] | 尚小红, 谢向誉, 曹升, 等. 木薯‘新选048’自交系群体表型鉴定评价及遗传多样性分析[J]. 植物生理学报, 2019, 55(9): 1277-1290. |
Shang XH, Xie XY, Cao S, et al. Phenotypic identification and genetic diversity of cassava cultivar ‘Xinxuan 048’ inbred lines[J]. Plant Physiol J, 2019, 55(9): 1277-1290. | |
[128] |
Zhang CZ, Wang P, Tang D, et al. The genetic basis of inbreeding depression in potato[J]. Nat Genet, 2019, 51(3): 374-378.
doi: 10.1038/s41588-018-0319-1 pmid: 30643248 |
[129] |
Zhang CZ, Yang ZM, Tang D, et al. Genome design of hybrid potato[J]. Cell, 2021, 184(15): 3873-3883.
doi: 10.1016/j.cell.2021.06.006 pmid: 34171306 |
[1] | YAO Xiao-wen, LIANG Xiao, CHEN Qing, WU Chun-ling, LIU Ying, LIU Xiao-qiang, SHUI Jun, QIAO Yang, MAO Yi-ming, CHEN Yin-hua, ZHANG Yin-dong. Study on the Expression Pattern of Genes in Lignin Biosynthesis Pathway of Cassava Resisting to Tetranychus urticae [J]. Biotechnology Bulletin, 2023, 39(2): 161-171. |
[2] | YU Xiao-ling, LI Wen-bin, LI Zhi-bo, RUAN Meng-bin. Cold Resistance Function Analysis of Cassava MeMYC2.2 [J]. Biotechnology Bulletin, 2023, 39(1): 224-231. |
[3] | HAN Zhi-ling, CHEN Qing, LIANG Xiao, WU Chun-ling, LIU Ying, WU Mu-feng, XU Xue-lian. Influence on Expression of Jasmonic Acid Signaling Pathway Gene in Tetranychus urticae Fed on Mite-resistant and Mite-susceptible Cassava Cultivars [J]. Biotechnology Bulletin, 2022, 38(6): 211-220. |
[4] | YANG Ya-jie, LI Yu-ying, SHEN Zhuang-zhuang, CHEN Tian, RONG Er-hua, WU Yu-xiang. Selection and Character Identification for Autopolyploid Progenies of Gossypium herbaceum [J]. Biotechnology Bulletin, 2022, 38(5): 64-73. |
[5] | ZOU Liang-ping, GUO Xin, QI Deng-feng, ZHAI Min, LI Zhuang, ZHAO Ping-juan, PENG Ming, NIU Xing-kui. Anthocyanin Accumulation and Its Gene Expression Induced by Low Nitrogen Stress in Cassava Seedlings [J]. Biotechnology Bulletin, 2022, 38(2): 75-82. |
[6] | KONG De-zhen, NIE Ying-bin, XU Hong-jun, CUI Feng-juan, MU Pei-yuan, TIAN Xiao-ming. Effects of Blend Seeding on the Yield,Purity and Yield Advantage of F1 in Three-line Hybrid Wheat [J]. Biotechnology Bulletin, 2022, 38(10): 132-139. |
[7] | CAO Xiu-kai, WANG Shan, GE Ling, ZHANG Wei-bo, SUN Wei. Advances in Extrachromosomal Circular DNA and Their Application in Domestic Animal Breeding [J]. Biotechnology Bulletin, 2022, 38(1): 247-257. |
[8] | TIAN Li, LI Jun-jiao, DAI Xiao-feng, ZHANG Dan-dan, CHEN Jie-yin. From Functional Genes to Biological Characteristics:The Molecular Basis of Pathogenicity in Verticillium dahliae [J]. Biotechnology Bulletin, 2022, 38(1): 51-69. |
[9] | SUN Ping-yong, ZHANG Wu-han, SHU Fu, HE Qiang, ZHANG Li, PENG Zhi-rong, DENG Hua-feng. Analysis of Mutation Sites of OsBADH2 Gene in Fragrant Rice and Development of Related Functional Marker [J]. Biotechnology Bulletin, 2021, 37(4): 1-7. |
[10] | WANG Yan-li, YANG Yi-ming, FAN Shu-tian, ZHAO Ying, XU Pei-lei, LU Wen-peng, LI Chang-yu. Genetic Diversity Analysis of 73 Vitis amurensis and Its Hybrids Offsprings Based on SSR Molecular Markers [J]. Biotechnology Bulletin, 2021, 37(1): 189-197. |
[11] | CHEN Yi-dan, ZHANG Yu, YANG Jie, ZHANG Qin, JIANG Li. Exploration of Key Functional Genes Affecting Milk Production Traits in Dairy Cattle Based on RNA-seq [J]. Biotechnology Bulletin, 2020, 36(9): 244-252. |
[12] | ZHANG Hai-miao, LI Yang, LIU Hai-feng, KONG Ling-guang, DING Xin-hua. Research Progress on Regulatory Genes of Important Agronomic Traits and Breeding Utilization in Rice [J]. Biotechnology Bulletin, 2020, 36(12): 155-169. |
[13] | ZHAO Guo-long, LIN Chun-jing, JIN Dong-chun, ZHANG Chun-bao. Advances in Restorer Genes for Fertility on Cytoplasmic Male Sterility in Major Crops [J]. Biotechnology Bulletin, 2020, 36(1): 116-125. |
[14] | LI Hui ZHA, Jian-jun, SUN Qing-ye. Effects of Acid Mine Drainage on the Abundance of Functional Genes Involved in Nitrogen Cycle in Soil Profiles [J]. Biotechnology Bulletin, 2019, 35(9): 249-256. |
[15] | YANG Yan-yan, HUO Yu-meng, WU Xiong, LIU Bing-jiang. Application of Male Sterility Molecular Markers in Identification of Onion Haploid [J]. Biotechnology Bulletin, 2019, 35(12): 169-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||