Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (8): 255-263.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0178
Previous Articles Next Articles
LI Qing-mao(), PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu()
Received:
2024-02-23
Online:
2024-08-26
Published:
2024-09-05
Contact:
HUANG Li-yu
E-mail:2856208870@qq.com;lyhuang@ynu.edu.cn
LI Qing-mao, PENG Cong-gui, QI Xiao-han, LIU Xing-lei, LI Zhen-yuan, LI Qin-yan, HUANG Li-yu. Screening and Identification of Excellent Strains of Endophytic Bacteria Promoting Rice Iron Absorption from Wild Rice[J]. Biotechnology Bulletin, 2024, 40(8): 255-263.
Fig. 1 Siderophore-producing ability analysis of isolated endophytic bacteria A: Plate schematic diagram of strains with the strongest siderophore-producing function from four wild rices. B: mp values of siderophore contents of endophytic bacteria among four wild rices. C: PCA diagram of siderophore contents produced by 128 endophytic bacteria. OL refers to Oryza longistaminata, OR to O. rufipogon, OO to O. officinalis, and OM to O. minuta
Fig. 2 Diversity classification of 82 endophytic bacteria (A)and siderophore-producing ability of 18 candidate strains of different genera/species (B)
Fig. 3 Phenotyping of rice treated by different endophytic bacteria with siderophore-producing ability Morphological phenotype(A)and statistical analysis of plant height(B), root length(C), chlorophyll(D), and iron content(E)after treated with different endophytic bacteria. Scale bar: 10 cm; * indicates significant difference compared with the control(P < 0.05)
接种菌株 Inoculated strain | 生长和生理指标Growth and physiological indicators | ||||
---|---|---|---|---|---|
株高 Plant height/cm | 根长 Root length/cm | 叶绿素含量(SPAD)Chlorophyll content (SPAD) | 铁含量 Total iron content/(mg·kg-1) | ||
OML3-3 | - | + | + | + | |
OMR1-7 | + | + | + | + | |
OOS1-3 | - | + | + | + | |
OOS2-3 | - | - | + | + | |
ORL1-5 | - | - | + | - | |
OML3-6 | + | + | + | + | |
ORL1-9 | - | - | + | + | |
ORR1-18 | + | - | + | - | |
OLL1-12 | - | - | - | - | |
OML2-8 | - | - | + | - | |
ORR3-11 | - | - | - | + | |
OOR2-3 | - | - | - | - | |
OMS2-7 | - | + | - | + | |
OMR2-7 | + | - | + | + | |
OOL1-5 | + | - | - | + | |
ORR3-14 | - | - | - | + | |
OLL1-10 | - | + | - | + | |
OLL2-1 | + | + | - | - |
Table 1 Effect of 18 siderophore-producing strains on the plant height, root length, chlorophyll and iron content of ZH11
接种菌株 Inoculated strain | 生长和生理指标Growth and physiological indicators | ||||
---|---|---|---|---|---|
株高 Plant height/cm | 根长 Root length/cm | 叶绿素含量(SPAD)Chlorophyll content (SPAD) | 铁含量 Total iron content/(mg·kg-1) | ||
OML3-3 | - | + | + | + | |
OMR1-7 | + | + | + | + | |
OOS1-3 | - | + | + | + | |
OOS2-3 | - | - | + | + | |
ORL1-5 | - | - | + | - | |
OML3-6 | + | + | + | + | |
ORL1-9 | - | - | + | + | |
ORR1-18 | + | - | + | - | |
OLL1-12 | - | - | - | - | |
OML2-8 | - | - | + | - | |
ORR3-11 | - | - | - | + | |
OOR2-3 | - | - | - | - | |
OMS2-7 | - | + | - | + | |
OMR2-7 | + | - | + | + | |
OOL1-5 | + | - | - | + | |
ORR3-14 | - | - | - | + | |
OLL1-10 | - | + | - | + | |
OLL2-1 | + | + | - | - |
Fig. 4 Phenotype of osbhlh156 mutants recovered by highly efficient candidate strains Morphological phenotype(A)and iron content(B)and chlorophyll content(C)of osbhlh156 plants before and after treated with endophytic bacteria. Scale bar: 5 cm. * indicates significant difference compared with the control(P < 0.05)
[1] | 刘金涛, 姚凡, 李臻园, 等. 植物铁素吸收机制研究进展[J]. 热带农业科学, 2022, 42(5): 26-33. |
Liu JT, Yao F, Li ZY, et al. Advances on the mechanism of iron absorption in plants[J]. Chin J Trop Agric, 2022, 42(5): 26-33. | |
[2] | 李利敏, 吴良欢, 马国瑞. 植物吸收铁机理及其相关基因研究进展[J]. 土壤通报, 2010, 41(4): 994-999. |
Li LM, Wu LH, Ma GR. The progress on iron-absorbing mechanism and related gene in plant[J]. Chin J Soil Sci, 2010, 41(4): 994-999. | |
[3] | 张进, 吴良欢, 孔向军, 等. 铁锌混合肥喷施对豌豆子粒铁、锌、可溶性糖和维生素C含量的影响[J]. 植物营养与肥料学报, 2006, 12(2): 2245-2249. |
Zhang J, Wu LH, Kong XJ, et al. Effect of foliar application of iron, zinc mixed fertilizers on the content of iron, zinc, soluble sugar and Vitamin C in green pea seeds[J]. Plant Nutr Fertil Sci, 2006, 12(2): 2245-2249. | |
[4] |
Gupta A, Rico-Medina A, Caño-Delgado AI. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269.
doi: 10.1126/science.aaz7614 pmid: 32299946 |
[5] |
Yuan X, Wang YM, Ji P, et al. A global transition to flash droughts under climate change[J]. Science, 2023, 380(6641): 187-191.
doi: 10.1126/science.abn6301 pmid: 37053316 |
[6] | Barbosa Filho MP, Yamada T. Upland rice production in Brazil[J]. Better Crops International, 2002, 16: 43-46. |
[7] |
Guerinot ML, Yi Y. Iron: nutritious, noxious, and not readily available[J]. Plant Physiol, 1994, 104(3): 815-820.
doi: 10.1104/pp.104.3.815 pmid: 12232127 |
[8] | 章艺, 刘鹏, 宋金敏, 等. 水稻根尖铁的积累及附着形态研究[J]. 中国生态农业学报, 2009, 17(5): 929-932. |
Zhang Y, Liu P, Song JM, et al. Forms and accumulation ofiron at rice root tip[J]. Chin J Eco Agric, 2009, 17(5): 929-932. | |
[9] | Staiger D. Chemical strategies for iron acquisition in plants[J]. Angew Chem Int Ed Engl, 2002, 41(13): 2259-2264. |
[10] |
Nozoye T, Nagasaka S, Kobayashi T, et al. Phytosiderophore efflux transporters are crucial for iron acquisition in graminaceous plants[J]. J Biol Chem, 2011, 286(7): 5446-5454.
doi: 10.1074/jbc.M110.180026 pmid: 21156806 |
[11] |
Takahashi K, Hayashi KI, Kinoshita T. Auxin activates the plasma membrane H+-ATPase by phosphorylation during hypocotyl elongation in Arabidopsis[J]. Plant Physiol, 2012, 159(2): 632-641.
doi: 10.1104/pp.112.196428 pmid: 22492846 |
[12] |
Lee S, Chiecko JC, Kim SA, et al. Disruption of OsYSL15 leads to iron inefficiency in rice plants[J]. Plant Physiol, 2009, 150(2): 786-800.
doi: 10.1104/pp.109.135418 pmid: 19376836 |
[13] | 张妮娜, 上官周平, 陈娟. 植物应答缺铁胁迫的分子生理机制及其调控[J]. 植物营养与肥料学报, 2018, 24(5): 1365-1377. |
Zhang NN, Shangguan ZP, Chen J. Molecular physiological mechanism and regulation of plant responses to iron deficiency stress[J]. J Plant Nutr Fertil, 2018, 24(5): 1365-1377. | |
[14] |
Gu SH, Wei Z, Shao ZY, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8): 1002-1010.
doi: 10.1038/s41564-020-0719-8 pmid: 32393858 |
[15] |
Wang NQ, Wang TQ, Chen Y, et al. Microbiome convergence enables siderophore-secreting-rhizobacteria to improve iron nutrition and yield of peanut intercropped with maize[J]. Nat Commun, 2024, 15(1): 839.
doi: 10.1038/s41467-024-45207-0 pmid: 38287073 |
[16] |
Ahmed E, Holmström SJM. Siderophores in environmental research: roles and applications[J]. Microb Biotechnol, 2014, 7(3): 196-208.
doi: 10.1111/1751-7915.12117 pmid: 24576157 |
[17] | 董子阳, 胡佳杰, 胡宝兰. 微生物铁载体转运调控机制及其在环境污染修复中的应用[J]. 生物工程学报, 2019, 35(11): 2189-2200. |
Dong ZY, Hu JJ, Hu BL. Regulation of microbial siderophore transport and its application in environmental remediation[J]. Chin J Biotechnol, 2019, 35(11): 2189-2200. | |
[18] | Baakza A, Vala AK, Dave BP, et al. A comparative study of siderophore production by fungi from marine and terrestrial habitats[J]. J Exp Mar Biol Ecol, 2004, 311(1): 1-9. |
[19] |
Wilson BR, Bogdan AR, Miyazawa M, et al. Siderophores in iron metabolism: from mechanism to therapy potential[J]. Trends Mol Med, 2016, 22(12): 1077-1090.
doi: S1471-4914(16)30147-2 pmid: 27825668 |
[20] |
Oberegger H, Schoeser M, Zadra I, et al. SREA is involved in regulation of siderophore biosynthesis, utilization and uptake in Aspergillus nidulans[J]. Mol Microbiol, 2001, 41(5): 1077-1089.
pmid: 11555288 |
[21] | 雷平, 黄军, 黄彬彬, 等. 1株产铁载体辣椒内生细菌的分离鉴定及其促生长作用[J]. 激光生物学报, 2020, 29(4): 379-384. |
Lei P, Huang J, Huang BB, et al. Isolation, identification and growth promoting effect of a siderophore-producing endophytic bacterium from capscium[J]. Acta Laser Biol Sin, 2020, 29(4): 379-384. | |
[22] | Wang YH, Zhang GY, Huang Y, et al. A potential biofertilizer-siderophilic bacteria isolated from the rhizosphere of Paris polyphylla var. yunnanensis[J]. Front Microbiol, 2022, 13: 870413. |
[23] |
Qi B, Han M. Microbial siderophore enterobactin promotes mitochondrial iron uptake and development of the host via interaction with ATP synthase[J]. Cell, 2018, 175(2): 571-582.e11.
doi: S0092-8674(18)30959-0 pmid: 30146159 |
[24] |
Priyanka, Agrawal T, Kotasthane AS, et al. Crop specific plant growth promoting effects of ACCd enzyme and siderophore producing and cynogenic fluorescent Pseudomonas[J]. 3 Biotech, 2017, 7(1): 27.
doi: 10.1007/s13205-017-0602-3 pmid: 28401463 |
[25] | Liu Q, Cheng L, Nian H, et al. Linking plant functional genes to rhizosphere microbes: a review[J]. Plant Biotechnol J, 2023, 21(5): 902-917. |
[26] |
Vannier N, Mesny F, Getzke F, et al. Genome-resolved metatranscriptomics reveals conserved root colonization determinants in a synthetic microbiota[J]. Nat Commun, 2023, 14(1): 8274.
doi: 10.1038/s41467-023-43688-z pmid: 38092730 |
[27] |
杨立凡, 田青霖, 龚禹瑞, 等. 小粒野生稻内生细菌的分离鉴定和促生功能分析[J]. 中国稻米, 2023, 29(4): 78-83.
doi: 10.3969/j.issn.1006-8082.2023.04.014 |
Yang LF, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza minuta and their plant growth-promoting activities[J]. China Rice, 2023, 29(4): 78-83. | |
[28] | 马永海, 田青霖, 龚禹瑞, 等. 普通野生稻内生细菌的分离鉴定及其对多年生稻的促生效果[J]. 云南大学学报: 自然科学版, 2023, 45(3): 768-778. |
Ma YH, Tian QL, Gong YR, et al. Screening and identification of endophytic bacteria from Oryza rufipogon and their effect on perennial rice growth[J]. J Yunnan Univ Nat Sci Ed, 2023, 45(3): 768-778. | |
[29] | Tian QL, Gong YR, Liu S, et al. Endophytic bacterial communities in wild rice(Oryza officinalis)and their plant growth-promoting effects on perennial rice[J]. Front Plant Sci, 2023, 14: 1184489. |
[30] | Rungin S, Indananda C, Suttiviriya P, et al. Plant growth enhancing effects by a siderophore-producing endophytic streptomycete isolated from a Thai jasmine rice plant(Oryza sativa L. cv. KDML105)[J]. Antonie Van Leeuwenhoek, 2012, 102(3): 463-472. |
[31] |
Wein T, Romero Picazo D, Blow F, et al. Currency, exchange, and inheritance in the evolution of symbiosis[J]. Trends Microbiol, 2019, 27(10): 836-849.
doi: S0966-842X(19)30151-9 pmid: 31257129 |
[32] |
Bai B, Liu WD, Qiu XY, et al. The root microbiome: community assembly and its contributions to plant fitness[J]. J Integr Plant Biol, 2022, 64(2): 230-243.
doi: 10.1111/jipb.13226 |
[33] | 崔冬明, 单晨, 史利桦, 等. 生物源新型铁螯合剂研究进展及其应用[J]. 华中农业大学学报, 2023, 42(6): 59-72. |
Cui DM, Shan C, Shi LH, et al. Progress and application of novel iron biochelates[J]. J Huazhong Agric Univ, 2023, 42(6): 59-72. | |
[34] | Sah S, Singh N, Singh R. Iron acquisition in maize(Zea mays L.)using Pseudomonas siderophore[J]. 3 Biotech, 2017, 7(2): 121. |
[35] | da Silva JF, da Silva TR, Escobar IEC, et al. Screening of plant growth promotion ability among bacteria isolated from field-grown sorghum under different managements in Brazilian drylands[J]. World J Microbiol Biotechnol, 2018, 34(12): 186. |
[36] |
Finazzi G, Petroutsos D, Tomizioli M, et al. Ions channels/transporters and chloroplast regulation[J]. Cell Calcium, 2015, 58(1): 86-97.
doi: 10.1016/j.ceca.2014.10.002 pmid: 25454594 |
[37] | Liang G, Zhang HM, Li Y, et al. Oryza sativa fer-like fe deficiency-induced transcription factor(Osfit/Osbhlh156)interacts with Osiro2 to regulate iron homeostasis[J]. J Integr Plant Biol, 2020, 62(5): 668-689. |
[1] | SUN Zhi-yong, DU Huai-dong, LIU Yang, MA Jia-xin, YU Xue-ran, MA Wei, YAO Xin-jie, WANG Min, LI Pei-fu. Genome-wide Association Analysis of γ-aminobutyric Acid in Rice Grains [J]. Biotechnology Bulletin, 2024, 40(8): 53-62. |
[2] | PANG Meng-zhen, XU Han-qin, LIU Hai-yan, SONG Juan, WANG Jia-han, SUN Li-na, JI Pei-mei, YIN Ze-zhi, HU You-chuan, ZHAO Xiao-meng, LIANG Shan-shan, ZHANG Si-ju, LUAN Wei-jiang. Gene Identification and Functional Analysis of Yellowish and Early Heading Mutant hz1 in Rice [J]. Biotechnology Bulletin, 2024, 40(7): 125-136. |
[3] | TIAN Sheng-ni, ZHANG Qin, DONG Yu-fei, DING Zhou, YE Ai-hua, ZHANG Ming-zhu. Effects of Acid Mine Drainage on Physicochemical Factors and Nitrogen-fixing Microorganisms in the Root Zone of Mature Rice [J]. Biotechnology Bulletin, 2024, 40(6): 271-280. |
[4] | KONG De-ting, QI Xiao-han, LIU Xing-lei, LI Li-ping, HU Feng-yi, HUANG Li-yu, QIN Shi-wen. Comparison and Analysis of Endophytic Bacterial Communities in Different Perennial Rice Varieties [J]. Biotechnology Bulletin, 2024, 40(5): 225-236. |
[5] | YANG Qi, WEI Zi-di, SONG Juan, TONG Kun, YANG Liu, WANG Jia-han, LIU Hai-yan, LUAN Wei-jiang, MA Xuan. Construction and Transcriptomic Analysis of Rice Histone H1 Triple Mutant [J]. Biotechnology Bulletin, 2024, 40(4): 85-96. |
[6] | LI Xing-rong, TAN Zhi-bing, ZHAO Yan, LI Yao-kui, ZHAO Bing-ran, TANG Li. Cloning and Functional Analysis of OsLCT3, a Low-affinity Cation Transporter Gene of Rice [J]. Biotechnology Bulletin, 2024, 40(4): 97-109. |
[7] | LIU Jia-ning, LI Meng, YANG Xin-sen, WU Wei, PEI Xin-wu, YUAN Qian-hua. Impact of Different Water Management Cultivation Methods on the Rhizosphere Bacteria Community of Shanlan Upland Rice [J]. Biotechnology Bulletin, 2024, 40(3): 242-250. |
[8] | LI Xue, LI Rong-ou, KONG Mei-yi, HUANG Lei. The Growth Promoting Effect of Bacillus amyloliquefaciens SQ-2 on Rice [J]. Biotechnology Bulletin, 2024, 40(2): 109-119. |
[9] | ZHANG Chao, WANG Zi-rui, SUN Ya-li, MAO Xin-chen, TANG Jia-qi, YU Heng-xiu. Functional Study of Vitamin B1 Synthesis-related Gene OsTHIC in Rice [J]. Biotechnology Bulletin, 2024, 40(2): 99-108. |
[10] | LIN Xin-yan, ZHANG Chuan-zhong, DAI Bing, WANG Xin-heng, LIU Jian-feng, WEN Li, XU Xing-jian, FANG Jun. Advances in Genetic and Molecular Mechanisms of Pre-harvest Sprouting in Rice [J]. Biotechnology Bulletin, 2024, 40(1): 24-31. |
[11] | WANG Zi-ying, LONG Chen-jie, FAN Zhao-yu, ZHANG Lei. Screening of OsCRK5-interacted Proteins in Rice Using Yeast Two-hybrid System [J]. Biotechnology Bulletin, 2023, 39(9): 117-125. |
[12] | WU Yuan-ming, LIN Jia-yi, LIU Yu-xi, LI Dan-ting, ZHANG Zong-qiong, ZHENG Xiao-ming, PANG Hong-bo. Identification of Rice Plant Height-associated QTL Using BSA-seq and RNA-seq [J]. Biotechnology Bulletin, 2023, 39(8): 173-184. |
[13] | YAO Sha-sha, WANG Jing-jing, WANG Jun-jie, LIANG Wei-hong. Molecular Mechanisms of Rice Grain Size Regulation Related to Plant Hormone Signaling Pathways [J]. Biotechnology Bulletin, 2023, 39(8): 80-90. |
[14] | LI Yu, LI Su-zhen, CHEN Ru-mei, LU Hai-qiang. Advances in the Regulation of Iron Homeostasis by bHLH Transcription Factors in Plant [J]. Biotechnology Bulletin, 2023, 39(7): 26-36. |
[15] | WANG Yu, YIN Ming-shen, YIN Xiao-yan, XI Jia-qin, YANG Jian-wei, NIU Qiu-hong. Screening, Identification and Degradation Characteristics of Nicotine-degrading Bacteria in Lasioderma serricorne [J]. Biotechnology Bulletin, 2023, 39(6): 308-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||