Biotechnology Bulletin ›› 2024, Vol. 40 ›› Issue (9): 260-269.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0279
Previous Articles Next Articles
WANG Mei-ling1(), GENG Li-li2, FANG Yu1,2, SHU Chang-long2, ZHANG Jie1,2()
Received:
2024-03-21
Online:
2024-09-26
Published:
2024-10-12
Contact:
ZHANG Jie
E-mail:meilingw_123@163.com;zhangjie05@caas.cn
WANG Mei-ling, GENG Li-li, FANG Yu, SHU Chang-long, ZHANG Jie. Control Potential of Bacillus thuringiensis 4BM1 Strain to Sclerotiniose in Brassica campestris L.[J]. Biotechnology Bulletin, 2024, 40(9): 260-269.
功能 Function | 基因编号 Gene ID | 差异倍数的log值 log2Fold-change | 调控方式 Regulated | 描述 Description |
---|---|---|---|---|
Steroid-related genes | Bra029392* | 8.51283041 | Up | Squalene epoxidase |
Bra031393 | 1.572668503 | Up | Sugar phosphate/phosphate translocator | |
Ethylene-related genes | Bra004522 | 1.13850342 | Up | 26S protease regulatory subunit 8 |
Bra002499* | 2.858810471 | Up | Concanavalin A-like lectin kinase-like protein | |
Bra017656 | 2.011958293 | Up | Ethylene-responsive transcription factor | |
Salicylic acid-related genes | Bra024318* | 1.115278771 | Up | U-box domain-containing protein 27 |
Bra037520 | 1.415677575 | Up | Inorganic ion transport and metabolism | |
Bra013123 | 2.021981527 | Up | Pathogenesis-related protein | |
Bra013732 | 1.576452095 | Up | WRKY transcription factor | |
Bra033158 | 1.751241545 | Up | WRKY transcription factor | |
Bra008435 | 1.190167975 | Up | WRKY transcription factor | |
Secondary metabolite biosynthesis-related genes | Bra040582 | 5.867390439 | Up | Sesquiterpenoid biosynthetic |
Bra021965 | 1.653287924 | Up | Abscisic acid-hydroxylase 3 | |
Chloroplast-related genes | Bra003004 | -6.601409988 | Down | Protochlorophyllide reductase A |
Table 1 List of up/down-regulated genes related to particular metabolisms in 4BM1-treated B. campestris leaves
功能 Function | 基因编号 Gene ID | 差异倍数的log值 log2Fold-change | 调控方式 Regulated | 描述 Description |
---|---|---|---|---|
Steroid-related genes | Bra029392* | 8.51283041 | Up | Squalene epoxidase |
Bra031393 | 1.572668503 | Up | Sugar phosphate/phosphate translocator | |
Ethylene-related genes | Bra004522 | 1.13850342 | Up | 26S protease regulatory subunit 8 |
Bra002499* | 2.858810471 | Up | Concanavalin A-like lectin kinase-like protein | |
Bra017656 | 2.011958293 | Up | Ethylene-responsive transcription factor | |
Salicylic acid-related genes | Bra024318* | 1.115278771 | Up | U-box domain-containing protein 27 |
Bra037520 | 1.415677575 | Up | Inorganic ion transport and metabolism | |
Bra013123 | 2.021981527 | Up | Pathogenesis-related protein | |
Bra013732 | 1.576452095 | Up | WRKY transcription factor | |
Bra033158 | 1.751241545 | Up | WRKY transcription factor | |
Bra008435 | 1.190167975 | Up | WRKY transcription factor | |
Secondary metabolite biosynthesis-related genes | Bra040582 | 5.867390439 | Up | Sesquiterpenoid biosynthetic |
Bra021965 | 1.653287924 | Up | Abscisic acid-hydroxylase 3 | |
Chloroplast-related genes | Bra003004 | -6.601409988 | Down | Protochlorophyllide reductase A |
4BM1 | CDS | Bases | Gene | misc_RNA | rRNA | tRNA | Intergenetic region/% | GC/% | Gene GC/% | Intergenetic GC/% |
---|---|---|---|---|---|---|---|---|---|---|
染色体Chromosome | 5529 | 5498518 | 5811 | 131 | 42 | 108 | 15.22 | 35.53 | 36.38 | 30.77 |
质粒1 Plasmid1 | 313 | 333074 | 318 | 5 | 0 | 0 | 21.78 | 33.37 | 34.29 | 30.06 |
质粒2 Plasmid2 | 205 | 218923 | 207 | 2 | 0 | 0 | 26.69 | 33.2 | 34.28 | 30.24 |
Table 2 Analysis of genome-wide sequenc of 4BM1 strain
4BM1 | CDS | Bases | Gene | misc_RNA | rRNA | tRNA | Intergenetic region/% | GC/% | Gene GC/% | Intergenetic GC/% |
---|---|---|---|---|---|---|---|---|---|---|
染色体Chromosome | 5529 | 5498518 | 5811 | 131 | 42 | 108 | 15.22 | 35.53 | 36.38 | 30.77 |
质粒1 Plasmid1 | 313 | 333074 | 318 | 5 | 0 | 0 | 21.78 | 33.37 | 34.29 | 30.06 |
质粒2 Plasmid2 | 205 | 218923 | 207 | 2 | 0 | 0 | 26.69 | 33.2 | 34.28 | 30.24 |
基因编号 Gene ID | 功能预测 Predicted function | 4F5菌株中预测的胞外多糖基因簇 Predicted eps gene cluster in Bt 4F5 strain | 4BM1与4F5之间的氨基酸序列相似性Amino acid identity between 4BM1 and 4F5/% |
---|---|---|---|
4BM1_Chr1_00581 | EpsC | 4F5_Chr1_00600 | N/A |
4BM1_Chr1_00582 | UTP-glucose-1-phosphate uridylyltransferase(EC:2.7.7.9) | 4F5_Chr1_00601 | 94.5 |
4BM1_Chr1_00583 | Lipopolysaccharide synthesis sugar transferase | 4F5_Chr1_00602 | 94.9 |
4BM1_Chr1_00584 | Nucleotide sugar dehydrogenase | 4F5_Chr1_00603 | 23 |
4BM1_Chr1_00585 | Asparagine synthase | 4F5_Chr1_00604 | N/A |
4BM1_Chr1_00586 | Polysaccharide biosynthesis protein | 4F5_Chr1_00605 | N/A |
4BM1_Chr1_00587 | Glycosyltransferase | 4F5_Chr1_00606 | N/A |
4BM1_Chr1_00588 | Hypothetical protein | 4F5_Chr1_00607 | N/A |
4BM1_Chr1_00589 | Hypothetical protein | 4F5_Chr1_00608 | N/A |
4BM1_Chr1_00590 | Glycosyltransferases group 1 | 4F5_Chr1_00609 | N/A |
4BM1_Chr1_00591 | Glycosyltransferase, group 1 family protein | 4F5_Chr1_00610 | N/A |
4BM1_Chr1_00592 | Glycosyltransferase | 4F5_Chr1_00611 | N/A |
4BM1_Chr1_00593 | Glucose-1-phosphate thymidylyltransferase(EC:2.7.7.24) | 4F5_Chr1_00612 | N/A |
4BM1_Chr1_00594 | dTDP-4-dehydrorhamnose 3,5-epimerase(EC:5.1.3.13) | None | |
4BM1_Chr1_00595 | dTDP-glucose 4,6-dehydratase | None | |
4BM1_Chr1_00596 | dTDP-4-dehydrorhamnose reductase(EC:1.1.1.133) | None | |
4BM1_Chr1_00597 | Membrane-bound transcriptional regulator LytR | 4F5_Chr1_00613 | 88.5 |
4BM1_Chr1_00598 | EPSX protein | 4F5_Chr1_00614 | 89.9 |
4BM1_Chr1_00599 | UDP-glucose 4-epimerase GalE | 4F5_Chr1_00616 | 96.1 |
4BM1_Chr1_00600 | Two component transcriptional regulator | 4F5_Chr1_00617 | 93.3 |
4BM1_Chr1_00601 | Integral membrane sensor signal transduction histidine kinase | 4F5_Chr1_00618 | 93 |
4BM1_Chr1_00602 | Hypothetical protein | 4F5_Chr1_00619 | 88.9 |
4BM1_Chr1_00603 | ABC transporter substrate-binding protein | 4F5_Chr1_00620 | 93.6 |
4BM1_Chr1_00604 | glpT; glycerol-3-phosphate transporter | 4F5_Chr1_00621 | 89.6 |
Table 3 Prediction of gene cluster for exopolysaccharide synthesis in 4BM1 strain
基因编号 Gene ID | 功能预测 Predicted function | 4F5菌株中预测的胞外多糖基因簇 Predicted eps gene cluster in Bt 4F5 strain | 4BM1与4F5之间的氨基酸序列相似性Amino acid identity between 4BM1 and 4F5/% |
---|---|---|---|
4BM1_Chr1_00581 | EpsC | 4F5_Chr1_00600 | N/A |
4BM1_Chr1_00582 | UTP-glucose-1-phosphate uridylyltransferase(EC:2.7.7.9) | 4F5_Chr1_00601 | 94.5 |
4BM1_Chr1_00583 | Lipopolysaccharide synthesis sugar transferase | 4F5_Chr1_00602 | 94.9 |
4BM1_Chr1_00584 | Nucleotide sugar dehydrogenase | 4F5_Chr1_00603 | 23 |
4BM1_Chr1_00585 | Asparagine synthase | 4F5_Chr1_00604 | N/A |
4BM1_Chr1_00586 | Polysaccharide biosynthesis protein | 4F5_Chr1_00605 | N/A |
4BM1_Chr1_00587 | Glycosyltransferase | 4F5_Chr1_00606 | N/A |
4BM1_Chr1_00588 | Hypothetical protein | 4F5_Chr1_00607 | N/A |
4BM1_Chr1_00589 | Hypothetical protein | 4F5_Chr1_00608 | N/A |
4BM1_Chr1_00590 | Glycosyltransferases group 1 | 4F5_Chr1_00609 | N/A |
4BM1_Chr1_00591 | Glycosyltransferase, group 1 family protein | 4F5_Chr1_00610 | N/A |
4BM1_Chr1_00592 | Glycosyltransferase | 4F5_Chr1_00611 | N/A |
4BM1_Chr1_00593 | Glucose-1-phosphate thymidylyltransferase(EC:2.7.7.24) | 4F5_Chr1_00612 | N/A |
4BM1_Chr1_00594 | dTDP-4-dehydrorhamnose 3,5-epimerase(EC:5.1.3.13) | None | |
4BM1_Chr1_00595 | dTDP-glucose 4,6-dehydratase | None | |
4BM1_Chr1_00596 | dTDP-4-dehydrorhamnose reductase(EC:1.1.1.133) | None | |
4BM1_Chr1_00597 | Membrane-bound transcriptional regulator LytR | 4F5_Chr1_00613 | 88.5 |
4BM1_Chr1_00598 | EPSX protein | 4F5_Chr1_00614 | 89.9 |
4BM1_Chr1_00599 | UDP-glucose 4-epimerase GalE | 4F5_Chr1_00616 | 96.1 |
4BM1_Chr1_00600 | Two component transcriptional regulator | 4F5_Chr1_00617 | 93.3 |
4BM1_Chr1_00601 | Integral membrane sensor signal transduction histidine kinase | 4F5_Chr1_00618 | 93 |
4BM1_Chr1_00602 | Hypothetical protein | 4F5_Chr1_00619 | 88.9 |
4BM1_Chr1_00603 | ABC transporter substrate-binding protein | 4F5_Chr1_00620 | 93.6 |
4BM1_Chr1_00604 | glpT; glycerol-3-phosphate transporter | 4F5_Chr1_00621 | 89.6 |
类型Type | 数量Amount |
---|---|
NPRS(non-ribosomal peptide synthetase cluster) | 4 |
NPRS-like | 1 |
Lasso peptide | 1 |
Terpene | 1 |
Ripp-like(Other unspecified ribosomally synthesised and post-translationally modified peptide product) | 2 |
Beta-lactone(Beta-lactone containing protease inhibitor) | 1 |
NI-siderophore(NRPS-independent, IucA/IucC-like siderophores) | 1 |
LAP(Linear azol(in)e-containing peptides) | 1 |
RRE-containing(RRE-element containing cluster) | 1 |
Total | 13 |
Table 4 Prediction of gene clusters for secondary metabolite biosynthesis of 4BM1 strain
类型Type | 数量Amount |
---|---|
NPRS(non-ribosomal peptide synthetase cluster) | 4 |
NPRS-like | 1 |
Lasso peptide | 1 |
Terpene | 1 |
Ripp-like(Other unspecified ribosomally synthesised and post-translationally modified peptide product) | 2 |
Beta-lactone(Beta-lactone containing protease inhibitor) | 1 |
NI-siderophore(NRPS-independent, IucA/IucC-like siderophores) | 1 |
LAP(Linear azol(in)e-containing peptides) | 1 |
RRE-containing(RRE-element containing cluster) | 1 |
Total | 13 |
Fig. 3 Analysis of growth-promoting and colonizing ability of 4BM1 strain A: Effect of 4BM1 strain on the fresh weight of B. campestris seedlings. B: Effect of 4BM1 strain on the dry weight of B. campestris seedlings. C: Ability of colonization of 4BM1 strain. All data are in the mean ± SE. Different lowercase letters indicate the difference at the level of P<0.05
[1] | Bravo A, Likitvivatanavong S, Gill SS, et al. Bacillus thuringiensis: a story of a successful bioinsecticide[J]. Insect Biochem Mol Biol, 2011, 41(7): 423-431. |
[2] |
王宇航, 束长龙, 耿丽丽, 等. 苏云金芽胞杆菌G033A产业化现状及应用前景分析[J]. 中国生物防治学报, 2020, 36(6): 837-841.
doi: 10.16409/j.cnki.2095-039x.2020.06.013 |
Wang YH, Shu CL, Geng LL, et al. Commercialization status and prospect analysis of Bacillus thuringiensis G033A product[J]. Chin J Biol Contr, 2020, 36(6): 837-841. | |
[3] |
Moazamian E, Bahador N, Azarpira N, et al. Anti-cancer parasporin toxins of new Bacillus thuringiensis against human colon(HCT-116)and blood(CCRF-CEM)cancer cell lines[J]. Curr Microbiol, 2018, 75(8): 1090-1098.
doi: 10.1007/s00284-018-1479-z pmid: 29687151 |
[4] | Cherif-Silini H, Silini A, Yahiaoui B, et al. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere[J]. Ann Microbiol, 2016, 66(3): 1087-1097. |
[5] | Nayak PS, Arakha M, Kumar A, et al. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis[J]. RSC Adv, 2016, 6(10): 8232-8242. |
[6] | Bhatt P, Rene ER, Huang YH, et al. Indigenous bacterial consortium-mediated cypermethrin degradation in the presence of organic amendments and Zea mays plants[J]. Environ Res, 2022, 212(Pt A): 113137. |
[7] | Martínez-Zavala SA, Barboza-Pérez UE, Hernández-Guzmán G, et al. Chitinases of Bacillus thuringiensis: phylogeny, modular structure, and applied potentials[J]. Front Microbiol, 2020, 10: 3032. |
[8] |
de la Fuente-Salcido NM, Casados-Vázquez LE, Barboza-Corona JE. Bacteriocins of Bacillus thuringiensis can expand the potential of this bacterium to other areas rather than limit its use only as microbial insecticide[J]. Can J Microbiol, 2013, 59(8): 515-522.
doi: 10.1139/cjm-2013-0284 pmid: 23898994 |
[9] | Roy A, Mahata D, Paul D, et al. Purification, biochemical characterization and self-assembled structure of a fengycin-like antifungal peptide from Bacillus thuringiensis strain SM1[J]. Front Microbiol, 2013, 4: 332. |
[10] | Akram W, Mahboob A, Javed AA. Bacillus thuringiensis strain 199 can induce systemic resistance in tomato against Fusarium wilt[J]. Eur J Microbiol Immunol, 2013, 3(4): 275-280. |
[11] | Wang ML, Geng LL, Jiao SM, et al. Bacillus thuringiensis exopolysaccharides induced systemic resistance against Sclerotinia sclerotiorum in Brassica campestris L[J]. Biol Contr, 2023, 183: 105267. |
[12] | Wang ML, Geng LL, Sun XX, et al. Screening of Bacillus thuringiensis strains to identify new potential biocontrol agents against Sclerotinia sclerotiorum and Plutella xylostella in Brassica campestris L[J]. Biol Contr, 2020, 145: 104262. |
[13] | Vlot AC, Sales JH, Lenk M, et al. Systemic propagation of immunity in plants[J]. New Phytol, 2021, 229(3): 1234-1250. |
[14] |
Hyakumachi M, Nishimura M, Arakawa T, et al. Bacillus thuringiensis suppresses bacterial wilt disease caused by Ralstonia solanacearum with systemic induction of defense-related gene expression in tomato[J]. Microbes Environ, 2013, 28(1): 128-134.
doi: 10.1264/jsme2.me12162 pmid: 23257909 |
[15] | Wu LM, Huang ZY, Li X, et al. Stomatal closure and SA-, JA/ET-signaling pathways are essential for Bacillus amyloliquefaciens FZB42 to restrict leaf disease caused by Phytophthora nicotianae in Nicotiana benthamiana[J]. Front Microbiol, 2018, 9: 847. |
[16] | Jiang CH, Fan ZH, Xie P, et al. Bacillus cereus AR156 extracellular polysaccharides served as a novel micro-associated molecular pattern to induced systemic immunity to pst DC3000 in Arabidopsis[J]. Front Microbiol, 2016, 7: 664. |
[17] | Niu DD, Liu HX, Jiang CH, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate- and jasmonate/ethylene-dependent signaling pathways[J]. Mol Plant Microbe Interact, 2011, 24(5): 533-542. |
[18] |
Takahashi H, Nakaho K, Ishihara T, et al. Transcriptional profile of tomato roots exhibiting Bacillus thuringiensis-induced resistance to Ralstonia solanacearum[J]. Plant Cell Rep, 2014, 33(1): 99-110.
pmid: 24121643 |
[19] | Purdy LH. Sclerotinia sclerotiorum: history, diseases and symptomatology, host range, geographic distribution, and impact[J]. Phytopathology, 1979, 69(8): 875. |
[20] | Hossain MM, Sultana F, Li WQ, et al. Sclerotinia sclerotiorum(lib.) de bary: insights into the pathogenomic features of a global pathogen[J]. Cells, 2023, 12(7): 1063. |
[21] |
Benigni M, Bompeix G. Chemical and biological control of Sclerotinia sclerotiorum in witloof chicory culture[J]. Pest Manag Sci, 2010, 66(12): 1332-1336.
doi: 10.1002/ps.2019 pmid: 20839264 |
[22] | Silva LG, Camargo RC, Mascarin GM, et al. Dual functionality of Trichoderma: Biocontrol of Sclerotinia sclerotiorum and biostimulant of cotton plants[J]. Front Plant Sci, 2022, 13: 983127. |
[23] | Zhao HZ, Zhou T, Xie JT, et al. Mycoparasitism illuminated by genome and transcriptome sequencing of Coniothyrium minitans, an important biocontrol fungus of the plant pathogen Sclerotinia sclerotiorum[J]. Microb Genom, 2020, 6(3): e000345. |
[24] | Liu JF, Hu XW, He HL, et al. Digital gene expression profiling of the transcriptional response to Sclerotinia sclerotiorum and its antagonistic bacterium Bacillus amyloliquefaciens in soybean[J]. Front Microbiol, 2022, 13: 1025771. |
[25] | Li H, Li HB, Bai Y, et al. The use of Pseudomonas fluorescens P13 to control Sclerotinia stem rot(Sclerotinia sclerotiorum)of oilseed rape[J]. J Microbiol, 2011, 49(6): 884-889. |
[26] |
Takahashi A, Casais C, Ichimura K, et al. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis[J]. Proc Natl Acad Sci USA, 2003, 100(20): 11777-11782.
doi: 10.1073/pnas.2033934100 pmid: 14504384 |
[27] | Wang Z, Tan XL, Zhang ZY, et al. Defense to Sclerotinia sclerotiorum in oilseed rape is associated with the sequential activations of salicylic acid signaling and jasmonic acid signaling[J]. Plant Sci, 2012, 184: 75-82. |
[28] | Kim D, Pertea G, Trapnell C, et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions[J]. Genome Biol, 2013, 14(4): R36. |
[29] |
Florea L, Song L, Salzberg SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000Research, 2013, 2: 188.
doi: 10.12688/f1000research.2-188.v1 pmid: 24555089 |
[30] | Anders S, Huber W. Differential expression analysis for sequence count data[J]. Genome Biol, 2010, 11(10): R106. |
[31] | Chin CS, Alexander DH, Marks P, et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data[J]. Nat Methods, 2013, 10(6): 563-569. |
[32] |
Hyatt D, Chen GL, Locascio PF, et al. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119.
doi: 10.1186/1471-2105-11-119 pmid: 20211023 |
[33] |
Emanuelsson O, Brunak S, von Heijne G, et al. Locating proteins in the cell using TargetP, SignalP and related tools[J]. Nat Protoc, 2007, 2(4): 953-971.
doi: 10.1038/nprot.2007.131 pmid: 17446895 |
[34] |
Lagesen K, Hallin P, Rødland EA, et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Res, 2007, 35(9): 3100-3108.
doi: 10.1093/nar/gkm160 pmid: 17452365 |
[35] |
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches[J]. Bioinformatics, 2013, 29(22): 2933-2935.
doi: 10.1093/bioinformatics/btt509 pmid: 24008419 |
[36] | Kanehisa M, Araki M, Goto S, et al. KEGG for linking genomes to life and the environment[J]. Nucleic Acids Res, 2008, 36(Data-base issue): D480-D484. |
[37] |
Tatusov RL, Galperin MY, Natale DA, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Res, 2000, 28(1): 33-36.
doi: 10.1093/nar/28.1.33 pmid: 10592175 |
[38] | Blin K, Medema MH, Kazempour D, et al. antiSMASH 2.0—a versatile platform for genome mining of secondary metabolite producers[J]. Nucleic Acids Res, 2013, 41(Web Server issue): W204-W212. |
[39] | 王美玲, 耿丽丽, 段江燕, 等. 拮抗核盘菌Bt菌株的筛选及抑菌活性研究[J]. 植物保护, 2017, 43(6): 62-67. |
Wang ML, Geng LL, Duan JY, et al. Screening of and studying on Bt strains with antagonistic activity against Sclerotinia sclerotiorum[J]. Plant Prot, 2017, 43(6): 62-67. | |
[40] | Divi UK, Rahman T, Krishna P. Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways[J]. BMC Plant Biol, 2010, 10: 151. |
[41] |
Krishna P. Brassinosteroid-mediated stress responses[J]. J Plant Growth Regul, 2003, 22(4): 289-297.
doi: 10.1007/s00344-003-0058-z pmid: 14676968 |
[42] | Choi DW, Jung J, Ha YI, et al. Analysis of transcripts in methyl jasmonate-treated ginseng hairy roots to identify genes involved in the biosynthesis of ginsenosides and other secondary metabolites[J]. Plant Cell Rep, 2005, 23(8): 557-566. |
[43] |
Laranjeira S, Amorim-Silva V, Esteban A, et al. Arabidopsis squalene epoxidase 3(SQE3)complements SQE1 and is important for embryo development and bulk squalene epoxidase activity[J]. Mol Plant, 2015, 8(7): 1090-1102.
doi: 10.1016/j.molp.2015.02.007 pmid: 25707755 |
[44] | 翁启勇, 李开本. 诱导植物系统抗性研究及进展[J]. 福建农业学报, 1998, 13(4): 24-29. |
Weng QY, Li KB. Study and progress in induction of systemic resistance of plant[J]. Fujian J Agric Sci, 1998, 13(4): 24-29. | |
[45] | Wang K, Shu CL, Bravo A, et al. Development of an online genome sequence comparison resource for Bacillus cereus sensu lato strains using the efficient composition vector method[J]. Toxins, 2023, 15(6): 393. |
[1] | REN Pei-dong, PENG Jian-ling, LIU Sheng-hang, YAO Zi-ting, ZHU Gui-ning, LU Guang-tao, LI Rui-fang. Isolation and Identification of a Bacillus safensis Strain GX-H6 and Its Biocontrol Effect on Bacterial Leaf Streak of Rice [J]. Biotechnology Bulletin, 2023, 39(5): 243-253. |
[2] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[3] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[4] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[5] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[6] | ZHANG Jie, XIA Ming-cong, ZHU Wen-qian, LIANG Juan, SUN Run-hong, XU Wen, WU Chao, YANG Li-rong. Screening of Bacillus sp. Against Vegetable Root-knot Nematode and Study on Its Biocontrol Mechanism [J]. Biotechnology Bulletin, 2021, 37(7): 175-182. |
[7] | ZHANG Ya-jing, SONG Mei-yan, ZHANG Yi-jing, FANG Qing, YANG Jun, PENG De-liang, HUANG Wen-kun, PENG Huan, ZHU Ying-bo, KONG Ling-an. Identification of Purpureocillium lilacinum and Trichoderma harzianum Strains for Simultaneously Controlling Cucumber Root Rot and Root-knot Nematode Diseases [J]. Biotechnology Bulletin, 2021, 37(2): 40-50. |
[8] | WANG Wei-xiong, SHEN Bo, JIA Hong-bai, QIAO Jun-qing, NIU Ben. Application of Rhizospheric Biocontrol Consortia and the Potential Mechanisms of Their Enhancing Efficacy on Disease-suppressive Effect [J]. Biotechnology Bulletin, 2020, 36(9): 31-41. |
[9] | SONG Ben-chao, ZHAO Dong-mei, YANG Zhi-hui, ZHANG Dai, ZHAO Zhi, ZHU Jie-hua. Screening and Identification of an Antagonistic Bacterium Against Rhizoctonia solani and Analysis of Biocontrol Factor [J]. Biotechnology Bulletin, 2019, 35(8): 9-16. |
[10] | CONG Zi-wen ,JIAO Jing-hua ,ZHOU Shuang-qing, HUANG Dong-yi ,WU Wen-qiang ,XU Yun ,XIA We,i ZHANG Rong-ping ,HUANG Xiao-long. Identification and Biocontrol Characteristics of Streptomyces sp. 30702 [J]. Biotechnology Bulletin, 2018, 34(6): 190-198. |
[11] | ZHANG Guang-zhi, WANG Jia-ning, WU Xiao-qing, ZHOU Fang-yuan, ZHANG Xin-jian, ZHAO Xiao-yan, XIE Xue-ying, ZHOU Hong-zi. Diversity and Functional Activity of Trichoderma in the Rhizosphere Soil from Facility Tomato Production [J]. Biotechnology Bulletin, 2018, 34(4): 179-185. |
[12] | GUO Qian-qian, YANG Qian-qian, SONG Li-min, LIANG Wen-xing. The Research Progress of Protein Acetylation in Plant Pathology [J]. Biotechnology Bulletin, 2018, 34(2): 96-101. |
[13] | GUO Ji-ping, MA Guang, WANG Zhi-jie, QI Shan-hou, WANG Bao-mei, SU Chang-qing. Identification and Analysis of Biocontrol Proteins from a Strain of Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2018, 34(1): 202-207. |
[14] | HAO Nan,TONG Zan-Hua,QIU De-Wen. Isolation of Brevibacillus laterosporus A60 and Its Greenhouse Control Efficiency Against Phytophthora capsica [J]. Biotechnology Bulletin, 2017, 33(9): 160-165. |
[15] | Zhou Guowang, Li Yuhong, Zhang Yuan, Li Haitao, Liu Rongmei, Gao Jiguo. A Study of Bacillus thuringiensis Strain LTS290 Inhibiting Fusarium [J]. Biotechnology Bulletin, 2015, 31(8): 153-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||