生物技术通报 ›› 2026, Vol. 42 ›› Issue (4): 190-201.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0966

• 研究报告 • 上一篇    下一篇

不同基因型甘蔗表型特征及根部转录组学分析

杨婷(), 杨宗桃, 艾静, 王禹童, 李燕烨, 邓军, 刘家勇, 赵勇(), 张跃彬   

  1. 1.热带作物生物育种全国重点实验室,昆明 650000
    2.云南省农业科学院甘蔗研究所,开远 661699
  • 收稿日期:2025-09-09 出版日期:2026-02-09 发布日期:2026-02-09
  • 通讯作者: 赵勇,男,硕士,副研究员,研究方向 :甘蔗生理代谢和绿色生产技术;E-mail: 18087395132@163.com
  • 作者简介:杨婷,女,博士研究生,研究方向 :甘蔗分子育种;E-mail: 1146824026@qq.com
  • 基金资助:
    云南省科技厅科技计划项目农业联合专项(202301BD07000-213);现代农业产业技术体系岗位科学家项目(CARS-17);云南省种子种业联合实验室项目(2022YFD2301100);“兴滇英才支持计划”云岭学者专项(XDYC-YLXZ-2022-0038)

Analysis of Phenotypic Characteristics and Root Transcriptomics of Sugarcane with Different Genotypes

YANG Ting(), YANG Zong-tao, AI Jing, WANG Yu-tong, LI Yan-ye, DENG jun, LIU Jia-yong, ZHAO Yong(), ZHANG Yue-bin   

  1. 1.National Key Laboratory for Tropical Crop Breeding, Kunming 650000
    2.Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661699
  • Received:2025-09-09 Published:2026-02-09 Online:2026-02-09

摘要:

目的 阐明甘蔗种质资源表型变异规律及其关键基因调控机制,为氮高效品种的定向选育提供分子靶点。 方法 以17份遗传背景清晰的甘蔗基因型材料为研究对象,系统测定株高、茎径、单茎重等7个农艺性状,评估其遗传多样性;通过聚类分析划分表型类群,并选取两类极端材料共6份进行根部转录组测序;采用DESeq2软件筛选差异表达基因(DEGs),并进行GO和KEGG功能富集分析;利用加权基因共表达网络分析(WGCNA)挖掘与类群分化相关的核心基因,并通过RT-qPCR验证其表达模式。此外,通过¹⁵N同位素吸收实验验证两类材料氮素吸收与利用能力的差异。 结果 17份材料表型变异系数为0.10-0.84,遗传多样性指数为2.55-2.83;聚类分析将其划分为Group Ι(7份)和Group Ⅱ(10份),两类群在茎径(1.12 cm vs 1.39 cm)、有效茎数(28.0 vs 15.1)及锤度(11.1 vs 14.9)等性状上差异明显。转录组分析共鉴定到9 724个DEGs,显著富集于亚油酸代谢(ko00591)、类黄酮生物合成(ko00941)、α-亚麻酸代谢(ko00592)、谷胱甘肽代谢(ko00480)、糖酵解/糖异生(ko00010)、乙醛酸与二羧酸代谢(ko00630)、淀粉和蔗糖代谢(ko00500)以及醚脂代谢(ko00565)等通路;WGCNA分析鉴定了10个与表型显著相关的枢纽基因,包括Sspon.02G0013210-1A(AP2转录因子)、Sspon.02G0008140-1T(GTP结合蛋白)等。¹⁵N吸收实验表明,Group II材料具有较强的氮素吸收能力,而Group I材料则表现出更高的氮积累特性。 结论 甘蔗野生种材料通过提高有效茎数适应低氮环境,而杂交种材料则通过增强氮吸收与利用效率实现生物量及糖分积累。关键基因协同调控碳氮代谢与氧化还原平衡是甘蔗氮效率形成的重要分子基础。

关键词: 甘蔗, 表型多样性, 转录组, 氮代谢, 加权基因共表达网络分析, 氮吸收利用, 差异表达基因, 枢纽基因

Abstract:

Objective To clarify the phenotypic variation pattern of sugarcane germplasm resources and theregulatory mechanism of key genes, and provide molecular targets for the directional breeding of nitrogen-efficient varieties. Method Seventeen sugarcane genotype materials with clear genetic backgrounds were used as the research objects. Seven agronomic traits such as plant height, stem diameter, and single-stem weight were systematically measured to evaluate their genetic diversity. Phenotypic groups were divided by cluster analysis, and a total of six extreme materials from two groups were selected for root transcriptome sequencing. The DESeq2 software was used to screen differentially expressed genes (DEGs), and GO and KEGG functional enrichment analyses were performed. Weighted gene co-expression network analysis (WGCNA) was used to mine core genes related to group differentiation, and their expression patterns were verified by RT-qPCR. Furthermore, the differences in nitrogen absorption and utilization abilities of the two types of materials were verified through a ¹⁵N isotope absorption experiment. Result The phenotypic variation coefficients of 17 materials ranged from 0.10 to 0.84, and the genetic diversity indices were between 2.55 and 2.83. By cluster analysis they were divided into Group Ι (7 materials) and Group Ⅱ (10 materials). The two groups showed significant differences in traits such as stem diameter (1.12 cm vs. 1.39 cm), number of effective stems (28.0 vs 15.1), and brix (11.1 vs 14.9). Transcriptome analysis identified a total of 9 724 differentially expressed genes (DEGs), which were significantly enriched in pathways such as linoleic acid metabolism (ko00591), flavonoid biosynthesis (ko00941), α-linolenic acid metabolism (ko00592), glutathione metabolism (ko00480), glycolysis/gluconeogenesis (ko00010), glyoxylate and dicarboxylate metabolism (ko00630), starch and sucrose metabolism (ko00500), and ether lipid metabolism (ko00565). Via weighted gene co-expression network analysis (WGCNA) the 10 hub genes were identified significantly associated with phenotypes, including Sspon.02G0013210-1A (AP2 transcription factor), Sspon.02G0008140-1T (GTP-binding protein), etc. The ¹⁵N absorption experiment showed that the materials in Group II had a stronger nitrogen absorption capacity, while the materials in Group I presented higher nitrogen accumulation characteristics. Conclusion Wild species materials adapt to low-nitrogen environments by increasing the number of effective stems, while hybrid materials achieve biomass and sugar accumulation by enhancing nitrogen absorption and utilization efficiency. The coordinated regulation of carbon and nitrogen metabolism and redox balance by key genes is an important molecular basis for the formation of nitrogen efficiency in sugarcane.

Key words: sugarcane (Saccharum spp.), phenotypic diversity, transcriptome, nitrogen metabolism, WGCNA, nitrogen absorption and utilization, DEGs, hub genes