[1] 林聪, 屠乃美, 易镇邪, 等. 耐盐碱能源植物研究进展[J]. 作物研究, 2012, 26(3):304-308. [2] 王奕, 任贤, 于志晶, 等. 玉米耐盐碱转基因研究进展[J]. 安徽农业科学, 2012, 40(7):3908-3911. [3] Sreenivasulua N, Soporyb SK, Kavi Kishorc PB, et al. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches[J]. Gene, 2007, 388(1-2):1-13. [4] 任伟, 王志峰, 徐安凯. 碱茅耐盐碱基因克隆研究进展[J]. 草业学报, 2010, 19(5):260-266. [5] 江香梅, 黄敏仁, 王明庥. 植物甜菜碱合成途径及基因工程研究进展[J]. 中国生物工程杂志, 2002, 22(4):49-55. [6] McCue KF, Hanson AD. Salt- inducible betaine aldehyde dehydro-genase from sugar beet:cDNA cloning and expression[J]. Plant Mol Bio, 1992, 18(1):1-11. [7] Hu CA, Delauney AJ, Verma DPS. A bifunctional enzyme(delta 1-pyrroline-5-carboxylate synthetase)catalyzes the first two steps in proline biosynthesis in plants[J]. Proc Natl Acad Sci USA, 1992, 89(19):9354-9358. [8] Szabados L, Savouré A. Proline:a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2):89-97. [9] 秘彩莉, 郭光艳, 齐志广, 等. 植物盐胁迫的信号传导途径[J]. 河北师范大学学报:自然科学版, 2007, 31(3):375-379. [10] 付寅生, 崔继哲, 陈广东, 等. 盐碱胁迫下碱地肤Na+/H+逆向转运蛋白基因KsNHX1表达分析[J]. 应用生态学报, 2012, 23(6):1629-1634. [11] Noreen S, Ashraf M, Hussain M, et al. Exogenous application of salicylic acid enhances antioxidative capacity in salt stressed sun-flower(Helianthus annuus L .)plants[J]. Pakistan Journal of Botany, 2009, 41(1):473-479. [12] 程继东, 安玉麟, 孙瑞芬, 等. 抗旱、耐盐基因类型及其机理的研究进展[J]. 华北农学报, 2006, 21(专辑):116-120. [13] He HY, He LF. The role of carbon monoxide signaling in the responses of plants to abiotic stresses[J]. Nitric Oxide, 2014, 42:40-43. [14] Ozfidan-Konakci C, Yildiztugay E, Kucukoduk M. Upregulation of antioxidant enzymes by exogenous gallic acid contributes to the amelioration in Oryza sativa roots exposed to salt and osmotic stress[J]. Environ Sci Pollut Res, 2015, 22(2):1487-1497. [15] Zhu JK. Plant salt tolerance[J]. TRENDS in Plant Science, 2001, 6(2):66-71. [16] Wang H, Zhou Y, Bird DA, Fowke LC. Functions, regulation and cellular localization of plant cyclin-dependent kinase inhibitors[J]. J Microsc, 2008, 231(2):234-246. [17] 江香梅, 黄敏仁, 王明麻. 植物抗盐碱、耐干旱基因工程研究进展[J]. 南京林业大学学报:自然科学版, 2001, 25(5):57-62. [18] Gupta K, Jha B, Agarwal PK. A dehydration-responsive element binding(DREB)transcription factor from the succulent halophyte Salicornia brachiata enhances abiotic stress tolerance in transgenic tobacco[J]. Mar Biotechnol, 2014, 16(6):657-673. [19] Agarwal PK, Agarwal P, Reddy MK, Sopory SK. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants[J]. Plant Cell Rep, 2006, 25(12):1263-1274. [20] 孙兰菊, 岳国峰, 王金霞, 等. 植物耐盐机制的研究进展[J]. 海洋科学, 2001, 25(4):28-31. [21] 董云洲, 王雪艳. 转肌醇甲基转移酶基因烟草的耐盐性及其遗传分析田[J]. 农业生物技术学报, 2000, 8(1):53-55. [22] 王慧中, 黄大年, 鲁瑞芳, 等. 转mtID和gutD双价基因水稻的耐盐性[J]. 科学通报, 2000, 45(7):724-729. [23] Lv S, Zhang KW, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance[J]. Plant Cell Physiol, 2008, 49(8):1150-1164. [24] Li B, Li N, Duan XG, et al. Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system[J]. J Biotechnol, 2010, 145(2):206-213. [25] Pasapula V, Shen G, Kuppu S, et al. Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene(AVP1)in cotton improves drought- and salt tolerance and increases fibre yield in the field conditions[J]. Plant Biotechnol J, 2011, 9(1):88-99. [26] Yang A, Dai X, Zhang WH, et al. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice[J]. J Exp Bot, 2012, 63(7):2541-2556. [27] Zsigmond L, Szepesi A, Tari I, et al. Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis[J]. Plant Sci, 2012, 182:87-93. [28] Zhang Z, Wang J, Zhang R, et al. The ethylene response factor AtERF98 enhances tolerance to salt through the transcriptional activation of ascorbic acid synthesis in Arabidopsis[J]. Plant J, 2012, 71(2):273-287. [29] Sultana S, Khew CY, Morshed MM, et al. Overexpression of monodehydroascorbate reductase from a mangrove plant(AeMDHAR)confers salt tolerance on rice[J]. J Plant Physiol, 2012, 169(3):311-318. [30] Baisakh N, RamanaRao MV, Rajasekaran K, et al. Enhanced salt stress tolerance of rice plants expressing a vacuolar H+ -ATPase subunit c1(SaVHAc1)gene from the halophyte grass Spartina alterniflora L?isel[J]. Plant Biotechnol J, 2012, 10(4):453-464. [31] Zhou ML, Ma JT, Zhao YM, et al. Improvement of drought and salt tolerance in Arabidopsis and Lotus corniculatus by overexpression of a novel DREB transcription factor from Populus euphratica[J]. Gene, 2012, 506(1):10-17. [32] Gao SQ, Chen M, Xia LQ, et al. A cotton(Gossypium hirsutum)DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat[J]. Plant Cell Rep, 2009, 28(2):301-311. [33] Ying S, Zhang DF, Fu J, et al. Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis[J]. Planta, 2012, 235(2):253-266. [34] Zhang Y, Li Y, Lai J, et al. Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis[J]. Mol Biol Rep, 2012, 39(4):4627-4633. [35] Zou J, Liu C, Liu A, et al. Overexpression of OsHsp17. 0 and OsHsp23. 7 enhances drought and salt tolerance in rice[J]. J Plant Physiol, 2012, 169(6):628-635. [36] Xie F, Wang Q, Sun R, Zhang B. Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton[J]. J Exp Bot, 2015, 66(3):789-804. [37] Zhou M, Li D, Li Z, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiol, 2013, 161(3):1375-1391. [38] Badran EG, Abogadallah GM, Nada RM, Nemat Alla MM. Role of glycine in improving the ionic and ROS homeostasis during NaCl stress in wheat[J]. Protoplasma, 2015, 252(3):835-844. |