[1] Marger MD, Saier MH.A major superfamily of transmembrane facilitators that catalyse uniport, symport and antiport[J]. Trends in Biochemical Bciences, 1993, 18(1):13-20. [2] Pao SS, Paulsen IT, Saier MH.Major facilitator superfamily[J]. Microbiology And Molecular Biology Reviews, 1998, 62(1):1-34. [3] Saier Jr MH, Beatty JT, Goffeau A, et al.The major facilitator superfamily[J]. J Mol Microbiol Biotechnol, 1999, 2:257-279. [4] Saier Jr MH, Tran CV, Barabote RD.TCDB:The transporter classification database for membrane transport protein analyses and information[J]. Nucleic Acids Research, 2006, 34(suppl 1):181-186. [5] Saier Jr MH, Reddy VS, et al.The transporter classifi-cation database[J]. Nucleic Acids Res, 2013, 42(D1):251-258. [6] Henderson PJF, Maiden MCJ.Homologous sugar transport proteins in Escherichia coli and their relatives in both prokaryotes and eukaryotes[J]. Philos Trans R Soc Lond B Biol Sci, 1990, 326(1236):391-410. [7] Boudker O, Verdon G.Structural perspectives on secondary active transporters[J]. Trends Pharmacol Sci, 2010, 31(9):418-426. [8] Yan N.Structural advances for the major facilitator superfamily(MFS)transporters[J]. Trends Biochem Sci, 2013, 38(3):151-159. [9] Yan N.Structural biology of the major facilitator superfamily transporters[J]. Annu Rev Biophys, 2015, 44:257-283. [10] 邓东, 颜宁. MFS超家族转运蛋白结构基础及转运机制[J]. 科学通报, 2015, 60(8):720-728. [11] Shi Y.Common folds and transport mechanisms of secondary active transporters[J]. Annu Rev Biophys, 2013, 42:51-72. [12] Reddy VS, Shlykov MA, et al.The major facilitator superfamily(MFS)revisited[J]. FEBS J, 2012, 279(11):2022-2035. [13] Heymann JAW, Sarker R, Hirai T, et al.Projection structure and molecular architecture of OxlT, a bacterial membrane transporter[J]. EMBO J, 2001, 20(16):4408-4413. [14] Hirai T, Heymann JA, et al.Three-dimensional structure of a bacterial oxalate transporter[J]. Nat Struct Biol, 2002, 9(8):597. [15] Abramson J, Smirnova I, Kasho V, et al.Structure and mechanism of the lactose permease of Escherichia coli[J]. Science, 2003, 301(5633):610-615. [16] Huang Y, Lemieux MJ, Song J, et al.Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli[J]. Science, 2003, 301(5633):616-620. [17] Dang S, Sun L, Huang Y, et al.Structure of a fucose transporter in an outward-open conformation[J]. Nature, 2010, 467(7316):734-738. [18] Newstead S, Drew D, et al.Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2[J]. EMBO J, 2011, 30(2):417-426. [19] Pedersen BP, Kumar H, Waight AB, et al.Crystal structure of a eukaryotic phosphate transporter[J]. Nature, 2013, 496(7446):533-536. [20] Deng D, Xu C, Sun P, et al.Crystal structure of the human glucose transporter GLUT1[J]. Nature, 2014, 510(7503):121-125. [21] Daniel H, Spanier B, Kottra G, et al.From bacteria to man:archaic proton-dependent peptide transporters at work[J]. Physiology, 2006, 21(2):93-102. [22] Zhao Y, Mao G, Liu M, et al.Crystal structure of the E. coli peptide transporter YbgH[J]. Structure, 2014, 22(8):1152-1160. [23] Harris NJ, Findlay HE, Sanders MR, et al.Comparative stability of major facilitator superfamily transport proteins[J]. European Biophysics Journal, 2017, 46(7):655-663. [24] 刘裕峰, 孙林峰, 龚海鹏. 运用加速算法研究岩藻糖转运蛋白FucP的转运机理[J]. 2013. [25] Smirnova IN, Kasho V, Kaback HR.Protonation and sugar binding to LacY[J]. Proc Natl Acad Sci, 2008, 105(26):8896-8901. [26] Emelie P, Emilia L, Eriksson MM, et al.The putative SLC transporters Mfsd5 and Mfsd11 are abundantly expressed in the mouse brain and have a potential role in energy homeostasis[J]. PLoS One, 2016, 11(6):e0156912. [27] Nguyen LN, Ma D, Shui G, et al.Mfsd2a is a transporter for the essential omega-3 fatty acid docosahexaenoic acid[J]. Nature, 2014, 509(7501):503. [28] Perland E, Hellsten SV, Schweizer N, et al.Structural prediction of two novel human atypical SLC transporters, MFSD4A and MFSD9, and their neuroanatomical distribution in mice[J]. PLoS One, 2017, 12(10):e0186325. [29] Damme M, Brandenstein L, Fehr S, et al.Gene disruption of Mfsd8, in mice provides the first animal model for CLN7 disease[J]. Neurobiology of Disease, 2014, 65(5):12-24. [30] Perland E, Fredriksson R.Classification systems of secondary active transporters[J]. Trends Pharmacol Sci, 2017, 3:305. [31] Perland E, Bagchi S, Klaesson A, et al. Characteristics of 29 novel atypical solute carriers of major facilitator superfamily type:evolutionary conservation, predicted structure and neuronal co-expression[J]. Open Biology, 2017, 7(9). pii 170142. [32] Pascual JM, Wang D, Lecumberri B, et al.GLUT1 deficiency and other glucose transporter diseases[J]. European Journal of Endocrinology, 2004, 150(5):627-33. [33] Aldahmesh MA, Alhassnan ZN, Aldosari M, et al.Neuronal ceroid lipofuscinosis caused by MFSD8 mutations:a common theme emerging[J]. Neurogenetics, 2009, 10(4):307. [34] Chen LH, Tsai HC, Yu PL, et al.A major facilitator superfamily transporter-mediated resistance to oxidative stress and fungicides requires Yap1, Skn7, and MAP kinases in the citrus fungal pathogen Alternaria alternata[J]. PLoS One, 2017, 12(1):e0169103. [35] 王月, 徐冰红, 刘虎, 等. 溶质转运蛋白超家族的功能及结构研究进展[J]. 现代生物医学进展, 2017, 17(24):4775-4783. [36] 孙传范, 肖凯, 韩胜芳, 等. 植物吸收和转运磷素的分子机理研究进展[J]. 中国农业科技导报, 2011, 13(2):17-24. |