生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 27-33.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1253
段玥彤1,2,3(), 王鹏年1,3, 张春宝1,3, 林春晶1,2,3()
收稿日期:
2021-09-28
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
段玥彤,女,硕士研究生,研究方向:大豆杂种优势利用和分子机理;E-mail: 基金资助:
DUAN Yue-tong1,2,3(), WANG Peng-nian1,3, ZHANG Chun-bao1,3, LIN Chun-jing1,2,3()
Received:
2021-09-28
Published:
2022-06-26
Online:
2022-07-11
摘要:
黄烷酮3-羟化酶(flavanone 3-hydroxylase,F3H)作为植物进入不同类黄酮代谢物分支的一个中枢酶,可以催化生成花青素和黄酮醇合成的共同前体物质二氢黄酮醇,在类黄酮合成途径中起着十分重要的调控作用。本文从F3H基因的发现、结构功能和表达调控等方面,综述了F3H基因在调节植物花青素和黄酮醇合成中的研究进展及调控网络,并对未来研究方向进行了展望。期望为F3H基因在植物类黄酮代谢合成途径的调控机制研究提供参考,也有助于利用F3H开展基因工程研究,定向培育植物新种质。
段玥彤, 王鹏年, 张春宝, 林春晶. 植物黄烷酮-3-羟化酶基因研究进展[J]. 生物技术通报, 2022, 38(6): 27-33.
DUAN Yue-tong, WANG Peng-nian, ZHANG Chun-bao, LIN Chun-jing. Research Progress in Plant Flavanone-3-hydroxylase Gene[J]. Biotechnology Bulletin, 2022, 38(6): 27-33.
[1] |
Schijlen EG, Ric de Vos CH, van Tunen AJ, et al. Modification of flavonoid biosynthesis in crop plants[J]. Phytochemistry, 2004, 65(19):2631-2648.
pmid: 15464151 |
[2] |
Wasson AP, Pellerone FI, Mathesius U. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia[J]. Plant Cell, 2006, 18(7):1617-1629.
pmid: 16751348 |
[3] |
Chen ZW, Hu YZ, Wu HH, et al. Synthesis and biological evaluation of flavonoids as vasorelaxant agents[J]. Bioorg Med Chem Lett, 2004, 14(15):3949-3952.
doi: 10.1016/j.bmcl.2004.05.061 URL |
[4] |
Davuluri GR, van Tuinen A, Fraser PD, et al. Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes[J]. Nat Biotechnol, 2005, 23(7):890-895.
pmid: 15951803 |
[5] |
Martin C, Prescott A, Mackay S, et al. Control of anthocyanin biosynthesis in flowers of Antirrhinum majus[J]. Plant J, 1991, 1(1):37-49.
pmid: 1844879 |
[6] |
Britsch L, Ruhnau-Brich B, Forkmann G. Molecular cloning, sequence analysis, and in vitro expression of flavanone 3 beta-hydroxylase from Petunia hybrida[J]. J Biol Chem, 1992, 267(8):5380-5387.
pmid: 1544919 |
[7] |
Davies KM. A cDNA clone for flavanone 3-hydroxylase from Malus[J]. Plant Physiol, 1993, 103(1):291.
pmid: 8208851 |
[8] |
Sparvoli F, Martin C, Scienza A, et al. Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis in grape(Vitis vinifera L.)[J]. Plant Mol Biol, 1994, 24(5):743-755.
pmid: 8193299 |
[9] |
Deboo GB, Albertsen MC, Taylor LP. Flavanone 3-hydroxylase transcripts and flavonol accumulation are temporally coordinate in maize anthers[J]. Plant J, 1995, 7(5):703-713.
pmid: 7773305 |
[10] |
Pelletier MK, Shirley BW. Analysis of flavanone 3-hydroxylase in Arabidopsis seedlings Coordinate regulation with Chalcone synthase. and Chalcone isomerase[J]. Plant Physiol, 1996, 111(1):339-345.
pmid: 8685272 |
[11] |
Zabala G, Vodkin LO. The wp mutation of Glycine max carries a gene-fragment-rich transposon of the CACTA superfamily[J]. Plant Cell, 2005, 17(10):2619-2632.
doi: 10.1105/tpc.105.033506 URL |
[12] |
Tu YH, Liu F, Guo DD, et al. Molecular characterization of flavanone 3-hydroxylase gene and flavonoid accumulation in two chemotyped safflower lines in response to methyl jasmonate stimulation[J]. BMC Plant Biol, 2016, 16(1):132.
doi: 10.1186/s12870-016-0813-5 URL |
[13] | 张星, 杨捷, 彭梦笛, 等. 百合黄烷酮3-羟化酶基因LhSorF3H的克隆与表达[J]. 西北植物学报, 2017, 37(12):2325-2331. |
Zhang X, Yang J, Peng MD, et al. Cloning and expression of LhSorF3H genes in Lilium[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(12):2325-2331. | |
[14] |
Gong ZZ, Yamazaki M, Sugiyama M, et al. Cloning and molecular analysis of structural genes involved in anthocyanin biosynthesis and expressed in a forma-specific manner in Perilla frutescens[J]. Plant Mol Biol, 1997, 35(6):915-927.
pmid: 9426610 |
[15] | Owens DK, McIntosh CA. Biosynthesis and function of citrus glycosylated flavonoids[M]//Gang DR. The Biological activity of phytochemicals. New York, NY:Springer, 2011:37-95. |
[16] |
Liu ML, Li XR, Liu YB, et al. Regulation of flavanone 3-hydroxylase gene involved in the flavonoid biosynthesis pathway in response to UV-B radiation and drought stress in the desert plant, Reaumuria soongorica[J]. Plant Physiol Biochem, 2013, 73:161-167.
doi: 10.1016/j.plaphy.2013.09.016 URL |
[17] | 黄元射, 舒田, 毛景欣, 等. 紫色甘薯渝紫薯7号黄烷酮3-羟化酶基因的克隆和序列分析[J]. 西南农业学报, 2016, 29(3):486-490. |
Huang YS, Shu T, Mao JX, et al. Molecular cloning and sequences analysis of flavanone 3-hydroxy lase gene from Yuzi7[J]. Southwest China J Agric Sci, 2016, 29(3):486-490. | |
[18] | 范晶, 黄明远, 吴苗苗, 等. 山茶属三个F3H基因的分子特性、系统进化及蛋白结构差异分析[J]. 基因组学与应用生物学, 2016, 35(5):1195-1205. |
Fan J, Huang MY, Wu MM, et al. Comparison of molecular characteristics, phylogeny and structure of three Camellia F3H genes[J]. Genom Appl Biol, 2016, 35(5):1195-1205. | |
[19] | 王鸿雪, 刘天宇, 庄维兵, 等. 花青素苷在植物逆境响应中的功能研究进展[J]. 农业生物技术学报, 2020, 28(1):174-183. |
Wang HX, Liu TY, Zhuang WB, et al. Research advances in the function of anthocyanin in plant stress response[J]. J Agric Biotechnol, 2020, 28(1):174-183. | |
[20] |
Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis[J]. Plant Cell, 1995, 7(7):1071-1083.
doi: 10.2307/3870058 URL |
[21] |
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments:anthocyanins, betalains and carotenoids[J]. Plant J, 2008, 54(4):733-749.
doi: 10.1111/j.1365-313X.2008.03447.x URL |
[22] |
Zuker A, Tzfira T, Ben-Meir H, et al. Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene[J]. Mol Breed, 2002, 9(1):33-41.
doi: 10.1023/A:1019204531262 URL |
[23] | Chaipanya C, Saetiew K, Arunyanart S, et al. Isolation and expression analysis of the flavanone3-hydroxylase genes in Lotus(Nelu-mbo nucifera gaertn. ), Waterlily(Nymphaea sp. )and transient silencing in Waterlily[J]. Chiang Mai J Sci, 2017; 44(2):427-437. |
[24] | 冯志熙, 刘应丽, 朱佳鹏, 等. 滇水金凤黄烷酮3-羟化酶基因(IuF3H)的克隆及表达分析[J]. 分子植物育种, 2021, 19(1):65-71. |
Feng ZX, Liu YL, Zhu JP, et al. Cloning and expression analysis of IuF3H gens in Impatiens uliginosa[J]. Mol Plant Breed, 2021, 19(1):65-71. | |
[25] |
Yang YN, Zhao G, Yue WQ, et al. Molecular cloning and gene expression differences of the anthocyanin biosynthesis-related genes in the red/green skin color mutant of pear(Pyrus communis L.)[J]. Tree Genet Genomes, 2013, 9(5):1351-1360.
doi: 10.1007/s11295-013-0644-6 URL |
[26] | 李明, 王玉红, 李长生, 等. 花生黄烷酮3-羟化酶基因AhF3H的克隆和表达分析[J]. 山东农业科学, 2013, 45(11):1-6. |
Li M, Wang YH, Li CS, et al. Cloning and expression analysis of flavanone 3-hydroxylase gene, AhF3H, from Arachis hypogaea L[J]. Shandong Agric Sci, 2013, 45(11):1-6. | |
[27] | 王海竹, 闫海芳, 徐启江. 红穗和白穗醋栗F3H的克隆及其在果实成熟过程中的表达分析[J]. 园艺学报, 2016, 43(10):2003-2011. |
Wang HZ, Yan HF, Xu QJ. Molecular cloning and expression analysis of F3H gene in Ribes rubrum and r. albrum during fruit mature[J]. Acta Hortic Sin, 2016, 43(10):2003-2011. | |
[28] | 刘宽亮, 赵志常, 高爱平, 等. 芒果(Mangifera indica)黄烷酮3-羟化酶基因的克隆及其表达分析[J]. 分子植物育种, 2017, 15(6):2106-2111. |
Liu KL, Zhao ZC, Gao AP, et al. Cloning and expression analysis of F3H gene from mango(Mangifera indica)[J]. Mol Plant Breed, 2017, 15(6):2106-2111. | |
[29] |
Klimek-Chodacka M, Oleszkiewicz T, Lowder LG, et al. Efficient CRISPR/Cas9-based genome editing in carrot cells[J]. Plant Cell Rep, 2018, 37(4):575-586.
doi: 10.1007/s00299-018-2252-2 pmid: 29332168 |
[30] |
Yi DB, Zhang HN, Lai B, et al. Integrative analysis of the coloring mechanism of red longan pericarp through metabolome and transcriptome analyses[J]. J Agric Food Chem, 2021, 69(6):1806-1815.
doi: 10.1021/acs.jafc.0c05023 URL |
[31] |
Jiang F, Wang JY, Jia HF, et al. RNAi-mediated silencing of the flavanone 3-hydroxylase gene and its effect on flavonoid biosynthesis in strawberry fruit[J]. J Plant Growth Regul, 2013, 32(1):182-190.
doi: 10.1007/s00344-012-9289-1 URL |
[32] | 尹潇雪, 蔡雯婷, 刘晓言, 等. ‘红颜’草莓果实黄烷酮3-羟化酶基因克隆及表达分析[J/OL]. 分子植物育种. http://kns.cnki.net/kcms/detail/46.1068.S.20210525.0952.005.html. |
Yin XX, Cai WT, Liu XY, et al. Cloning and expression analysis of flavanone 3-hydroxylase gene in fruit of ‘Benihoppe’ strawberry[J/OL]. Molecular Plant Breeding. http://kns.cnki.net/kcms/detail/46.1068.S.20210525.0952.005.html. | |
[33] |
Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology[J]. Plant Physiol, 2001, 126(2):485-493.
pmid: 11402179 |
[34] |
Mahajan M, Yadav SK. Overexpression of a tea flavanone 3-hydroxylase gene confers tolerance to salt stress and Alternaria solani in transgenic tobacco[J]. Plant Mol Biol, 2014, 85(6):551-573.
doi: 10.1007/s11103-014-0203-z pmid: 24880475 |
[35] |
Flachowsky H, Halbwirth H, Treutter D, et al. Silencing of flavanone-3-hydroxylase in apple(Malus × domestica Borkh. )leads to accumulation of flavanones, but not to reduced fire blight susceptibility[J]. Plant Physiol Biochem, 2012, 51:18-25.
doi: 10.1016/j.plaphy.2011.10.004 URL |
[36] |
Meng C, Zhang S, Deng YS, et al. Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco[J]. Plant Physiol Biochem, 2015, 96:388-400.
doi: 10.1016/j.plaphy.2015.08.019 URL |
[37] |
Xiong S, Tian N, Long JH, et al. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L[J]. Plant Physiol Biochem, 2016, 105:29-36.
doi: 10.1016/j.plaphy.2016.04.005 URL |
[38] |
Song XY, Diao JJ, Ji J, et al. Molecular cloning and identification of a flavanone 3-hydroxylase gene from Lycium chinense, and its overexpression enhances drought stress in tobacco[J]. Plant Physiol Biochem, 2016, 98:89-100.
doi: 10.1016/j.plaphy.2015.11.011 URL |
[39] |
Han YH, Huang KY, Liu YJ, et al. Functional analysis of two flavanone-3-hydroxylase genes from Camellia sinensis:a critical role in flavonoid accumulation[J]. Genes, 2017, 8(11):300.
doi: 10.3390/genes8110300 URL |
[40] | 许明, 伊恒杰, 郭佳鑫, 等. 藤茶黄烷酮3-羟化酶基因AgF3H的克隆及表达分析[J]. 西北植物学报, 2020, 40(2):185-192. |
Xu M, Yi HJ, Guojia X, et al. Cloning and expression analysis of a flavanone 3-hydroxylase gene from Ampelopsis grossedentata[J]. Acta Botanica Boreali-Occidentalia Sinica, 2020, 40(2):185-192. | |
[41] |
Jan R, Asaf S, Paudel S, et al. Discovery and validation of a novel step catalyzed by OsF3H in the flavonoid biosynthesis pathway[J]. Biology, 2021, 10(1):32.
doi: 10.3390/biology10010032 URL |
[42] |
Wang Z, Wang SS, Wu MZ, et al. Evolutionary and functional analyses of the 2-oxoglutarate-dependent dioxygenase genes involved in the flavonoid biosynthesis pathway in tobacco[J]. Planta, 2019, 249(2):543-561.
doi: 10.1007/s00425-018-3019-2 URL |
[43] | 王贝贝. 四翅滨藜类黄酮合成关键酶编码基因的克隆及功能分析[D]. 兰州: 兰州大学, 2021. |
Wang BB. Cloning and functional analysis of genes encoding key enzymes of flavonoid synthesis from Atriplex canescens[D]. Lanzhou: Lanzhou University, 2021. | |
[44] |
Rahim MA, Busatto N, Trainotti L. Regulation of anthocyanin biosynthesis in peach fruits[J]. Planta, 2014, 240(5):913-929.
doi: 10.1007/s00425-014-2078-2 URL |
[45] |
Kee ES, Naing AH, Lim SH, et al. MYB transcription factor isolated from Raphanus sativus enhances anthocyanin accumulation in Chrysanthemum cultivars[J]. 3 Biotech, 2016, 6(1):79.
doi: 10.1007/s13205-016-0396-8 URL |
[46] |
Zhang YZ, Xu SZ, Ma HP, et al. The R2R3-MYB gene PsMYB58 positively regulates anthocyanin biosynthesis in tree peony flowers[J]. Plant Physiol Biochem, 2021, 164:279-288.
doi: 10.1016/j.plaphy.2021.04.034 URL |
[47] |
Zhu HF, Fitzsimmons K, Khandelwal A, et al. CPC, a single-repeat R3 MYB, is a negative regulator of anthocyanin biosynthesis in Arabidopsis[J]. Mol Plant, 2009, 2(4):790-802.
doi: 10.1093/mp/ssp030 URL |
[48] |
Wang TL, Wang S, Wang Y, et al. Jasmonic acid-induced inhibition of root growth and leaf senescence is reduced by GmbHLH3, a soybean bHLH transcription factor[J]. Can J Plant Sci, 2020, 100(5):477-487.
doi: 10.1139/cjps-2019-0250 URL |
[49] |
Weng CY, Zhu MH, Liu ZQ, et al. Integrated bioinformatics analyses identified SCL3-induced regulatory network in Arabidopsis thaliana roots[J]. Biotechnol Lett, 2020, 42(6):1019-1033.
doi: 10.1007/s10529-020-02850-z URL |
[50] |
Shi HT, Liu GY, Wei YX, et al. The zinc-finger transcription factor ZAT6 is essential for hydrogen peroxide induction of anthocyanin synthesis in Arabidopsis[J]. Plant Mol Biol, 2018, 97(1/2):165-176.
doi: 10.1007/s11103-018-0730-0 URL |
[51] |
Yuan TT, Xu HH, Zhang Q, et al. The COP1 target SHI-RELATED SEQUENCE5 directly activates photomorphogenesis-promoting genes[J]. Plant Cell, 2018, 30(10):2368-2382.
doi: 10.1105/tpc.18.00455 URL |
[52] |
Xu Y, Wang GB, Cao FL, et al. Light intensity affects the growth and flavonol biosynthesis of Ginkgo(Ginkgo biloba L.)[J]. New For, 2014, 45(6):765-776.
doi: 10.1007/s11056-014-9435-7 URL |
[53] |
Han YH, Huang KY, Liu YJ, et al. Functional analysis of two flavanone-3-hydroxylase genes from Camellia sinensis:a critical role in flavonoid accumulation[J]. Genes, 2017, 8(11):300.
doi: 10.3390/genes8110300 URL |
[54] | 郑晟, 毛玉珊, 张腾国, 等. 柠条锦鸡儿F3H基因克隆及功能分析[J]. 广西植物, 2017, 37(6):723-733. |
Zheng S, Mao YS, Zhang TG, et al. Cloning and expression analysis of F3H gene in Caragana korshinskii[J]. Guihaia, 2017, 37(6):723-733. | |
[55] | 何贝轩, 薛英茹, 涂燕华, 等. CtCHS4响应茉莉酸甲酯诱导促进了红花醌式查尔酮类化合物的积累[J]. 药学学报, 2018, 53(4):636-645. |
He BX, Xue YR, Tu YH, et al. Ct CHS4 induces the accumulation of safflower quinone chalcones in response to methyl jasmonate induction[J]. Acta Pharm Sin, 2018, 53(4):636-645. | |
[56] | He Y, Luo Y, Wang Q, et al. Spray treatment of leaves with Fe2+ promotes procyanidin biosynthesis by upregulating the expression of the F3H and ANS genes in red rice grains(Oryza sativa L.)[J]. J Cereal Sci, 2021, 100:103231. |
[57] |
Lee J, He K, Stolc V, et al. Analysis of transcription factor HY5 genomic binding sites revealed its hierarchical role in light regulation of development[J]. Plant Cell, 2007, 19(3):731-749.
doi: 10.1105/tpc.106.047688 URL |
[58] | Fang ZZ, Kui LW, Jiang CC, et al. Postharvest temperature and light treatments induce anthocyanin accumulation in peel of ‘Akihime’ plum(Prunus salicina LindL.)via transcription factor PsMYB10. 1[J]. Postharvest Biol Technol, 2021, 179:111592. |
[59] | 张学英, 张上隆, 骆军, 等. 果实花色素苷合成研究进展[J]. 果树学报, 2004, 21(5):456-460. |
Zhang XY, Zhang SL, Luo J, et al. Advances in research on fruit anthoyanin synthesis[J]. J Fruit Sci, 2004, 21(5):456-460. | |
[60] | 沈忠伟, 许昱, 夏犇, 等. 植物类黄酮次生代谢生物合成相关转录因子及其在基因工程中的应用[J]. 分子植物育种, 2008, 6(3):542-548. |
Shen ZW, Xu Y, Xia B, et al. Transcription factors involved in plant flavonoid biosynthesis of secondary metabolism and its application in genetic engineering[J]. Mol Plant Breed, 2008, 6(3):542-548. |
[1] | 李博, 刘合霞, 陈宇玲, 周兴文, 朱宇林. 金花茶CnbHLH79转录因子的克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2023, 39(8): 241-250. |
[2] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[3] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[4] | 张和臣, 袁欣, 高杰, 王校晨, 王慧娟, 李艳敏, 王利民, 符真珠, 李保印. 植物花瓣呈色机理及花色分子育种[J]. 生物技术通报, 2023, 39(5): 23-31. |
[5] | 马芳芳, 刘冠闻, 庞冰, 蒋春美, 师俊玲. 强化细胞外排提高工程菌类黄酮产量的策略[J]. 生物技术通报, 2023, 39(5): 63-76. |
[6] | 平怀磊, 郭雪, 余潇, 宋静, 杜春, 王娟, 张怀璧. 滇牡丹PdANS的克隆、表达及与花青素含量的相关性[J]. 生物技术通报, 2023, 39(3): 206-217. |
[7] | 齐方婷, 黄河. 观赏植物花斑形成调控机制的研究进展[J]. 生物技术通报, 2023, 39(10): 17-28. |
[8] | 杨小峰, 秦小伟, 郭泽媛, 吕丽华. 原花青素对体外培养绵羊卵泡颗粒细胞增殖的影响[J]. 生物技术通报, 2022, 38(9): 258-263. |
[9] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[10] | 邹良平, 郭鑫, 起登凤, 翟敏, 李壮, 赵平娟, 彭明, 牛兴奎. 低氮胁迫诱导木薯幼苗花青素积累及其基因表达[J]. 生物技术通报, 2022, 38(2): 75-82. |
[11] | 田清尹, 岳远征, 申慧敏, 潘多, 杨秀莲, 王良桂. 植物观赏器官中类胡萝卜素代谢调控的研究进展[J]. 生物技术通报, 2022, 38(12): 35-46. |
[12] | 姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57. |
[13] | 赖恭梯, 阙秋霞, 潘若, 刘雨轩, 王琦, 赖谱富, 高慧颖, 赖呈纯. 刺葡萄查尔酮合成酶基因CHS对不同光质的响应及转录因子调控分析[J]. 生物技术通报, 2022, 38(11): 129-139. |
[14] | 罗雅方, 朱春花, 肖钰婷, 李方全, 张江, 王玉书. 羽衣甘蓝类黄酮糖基转移酶基因的筛选及分析[J]. 生物技术通报, 2022, 38(11): 194-201. |
[15] | 袁恺, 何伟, 杨云丽, 朱威宇, 彭超, 安泰, 李丽, 周卫强. 灵芝酸生物合成及代谢调控研究进展[J]. 生物技术通报, 2021, 37(8): 46-54. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 661
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 966
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||