生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 103-112.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0332
侯鹰翔1,2(), 费思恬1,2, 宋松泉1, 罗勇2, 张超1,2()
收稿日期:
2024-04-08
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
张超,男,博士,讲师,研究方向:水稻分子生物学;E-mail: ricezhangchao@xnu.edu.cn作者简介:
侯鹰翔,男,硕士,农艺师,研究方向:水稻遗传育种;E-mail: 450501341@qq.com
基金资助:
HOU Ying-xiang1,2(), FEI Si-tian1,2, SONG Song-quan1, LUO Yong2, ZHANG Chao1,2()
Received:
2024-04-08
Published:
2024-11-26
Online:
2024-12-19
摘要:
植物MADS-box转录因子是一类含有MADS-box结构域的蛋白,在调控植物生长发育和逆境响应中发挥重要作用。水稻MADS-box转录因子的生物学功能广受关注,取得了诸多研究进展,在已知的75个水稻MADS-box家族成员中至少有33个成员的功能已被研究报道,它们在花器官发育、穗发育、开花习性、种子发育、株高形态建成、根系发育,以及干旱、盐分、高温、低温、稻瘟病等生物与非生物胁迫响应等方面扮演了重要角色。研究表明,MADS-box成员通过相互间的作用或与其他转录因子互作形成了一个复杂的调控网络,主要涉及植物激素信号转导、活性氧平衡、渗透调节、泛素化、DNA甲基化等途径及其之间的协同作用。研究发现,绝大多数MADS-box家族成员参与生长发育调控,尤其是花器官发育,部分成员生物学功能存在冗余性,但其可能在不同的发育阶段、组织类型或环境条件下发挥作用,未来需要更深入地解析这些基因的功能特异性和冗余性,以揭示它们在水稻生长发育中的独特作用。然而,水稻MADS-box家族仍然有众多成员的功能尚不清楚,需要更多研究去揭示它们的作用。值得注意的是,部分水稻MADS-box成员展示了潜在的应用价值,通过引导编辑技术和重离子辐射诱变等方法,高效利用这些基因资源去改良水稻的产量、品质和抗逆性等性状,是未来研究的重要方向。本文综述水稻MADS-box转录因子生物学功能,以期为水稻分子育种提供策略。
侯鹰翔, 费思恬, 宋松泉, 罗勇, 张超. 水稻MADS-box家族研究进展[J]. 生物技术通报, 2024, 40(11): 103-112.
HOU Ying-xiang, FEI Si-tian, SONG Song-quan, LUO Yong, ZHANG Chao. Research Progress in MADS-box Family in Rice[J]. Biotechnology Bulletin, 2024, 40(11): 103-112.
基因名称 Gene name | 生物学功能 Biological functions | 参考文献 References |
---|---|---|
OsMADS1 | 调控开花;控制小花育性;控制外稃和内稃特定细胞类型的分化;控制小花分生组织规范;调节籽粒大小和产量;调控株高 Regulates flowering; control floret fertility; control differentiation of specific cell types in lemma and palea; control floret meristem specification; regulates seed size and yield; regulates plant height | [ |
OsMADS2 | 调控水稻浆片形成;调控雄蕊发育;控制水稻小花第二轮器官的大小形状和分化 Regulates rice paddy sheet formation; regulates stamen development; control size, shape and differentiation of rice floret secondary organs | [ |
OsMADS3 | 调节花器官和花分生组织发育;维持雄蕊发育;调控胚珠发育 Regulates floral organ and floral meristem development; maintains stamen development; regulates ovule development | [ |
OsMADS4 | 调控水稻雄蕊发育Regulates rice stamen development | [ |
OsMADS5 | 调控小穗形态建成;调控水稻穗发育;抑制根的伸长;限制花序分枝 Regulates spikelet morphogenesis; regulates rice spike development; inhibits root elongation; limits inflorescence branching | [ |
OsMADS6 | 促进胚乳中养分积累;调控花器官和分生组织发育;促进提前开花;决定内稃发育,影响水稻产量和品质;维持外稃发育 Promotes nutrient accumulation in endosperm; regulates development of floral organs and meristematic tissues; promotes early flowering; determines palea development; affects rice yield and quality; maintains lemma development | [ |
OsMADS7 | 调控穗发育; 在高温下维持直链淀粉含量稳定;调控开花时间 Regulates spike development; maintains stable amylose content at high temperatures; regulates flowering time | [ |
OsMADS8 | 参与绒毡层的发育;调节花器官发育和种子萌发 Involved in the development of tapetum; regulates floral organ development and seed germination | [ |
OsMADS13 | 调控胚珠发育;确定花器官和分生组织形成 Regulates ovule development; determines the formation of floral organs and meristematic tissues | [ |
OsMADS14 | 参与贮藏淀粉的合成Involved in storage starch synthesis | [ |
OsMADS15 | 调控生殖习性Regulates reproductive habits | [ |
OsMADS16 | 调控花器官发育Regulates floral organ development | [ |
OsMADS17 | 参与花器官发育;增加穗粒数和粒重Involved in floral organ development; increases grain number and grain weight | [ |
OsMADS18 | 诱导提前开花;调控花序分生组织和植物形态建成;参与ABA响应 Induces early flowering; regulates inflorescence meristem organization and plant morphogenesis; involved in ABA response | [ |
OsMADS22 | 参与BR响应;调控花器官发育Involved in BR response; regulates floral organ development | [ |
OsMADS23 | 调控干旱和盐胁迫耐受性; 调节植株缺水耐受性 Regulates drought and salt stress tolerance; regulates plant water deficit tolerance | [ |
OsMADS25 | 调节根的生长发育以及耐盐性Regulates root growth and development and salt tolerance | [ |
OsMADS26 | 参与稻瘟病菌和白叶枯病菌的抗性以及耐旱性 Involved in resistance to Magnaporthe grisea and Xanthomonas oryzae, and drought tolerance | [ |
OsMADS27 | 调节根的生长发育以及耐盐性Regulates root development and salt tolerance | [ |
OsMADS29 | 控制水稻种子发育过程中母体组织细胞的退化;调控胚和胚乳的发育 Controls the degeneration of maternal tissue cells during rice seed development; regulates embryo and endosperm development | [ |
OsMADS32 | 调控花器官发育Regulates floral organ development | [ |
OsMADS34 | 调控花序和小穗发育;限制花序分枝;调控籽粒大小和产量;维持空颖壳 Regulates inflorescence and spikelet development; restricts inflorescence branching; regulates grain size and yield; maintains empty glumes | [ |
OsMADS47 | 调控初生根、胚芽鞘发育,影响叶倾角 Regulates development of primary roots and embryo sheaths; affects leaf inclination angle | [ |
OsMADS50 | 调控长日照开花; 导致愈伤期的极度早花 Regulates flowering in long days; leads to extremely early flowering at the callus stage | [ |
OsMADS51 | 调控短日照开花Regulates short-day flowering | [ |
OsMADS55 | 调控水稻分蘖和籽粒大小Regulates tillering and grain size in rice | [ |
OsMADS56 | 调控长日照开花; 调控籽粒大小和千粒重 Regulates flowering in long sunlight; regulates grain size and thousand-grain weight | [ |
OsMADS57 | 调控低温和高盐耐受性;调控株高发育、穗颈节间伸长和分蘖;调节长距离氮素转运和根系伸长 Regulates low temperature and high salt tolerance; regulates plant height development, internode elongation and tillering; regulates long distance nitrogen transport and root elongation | [ |
OsMADS58 | 调控花器官发育Regulates floral organ development | [ |
OsMADS60 | 调控籽粒大小;调控株高;调控长日照开花Regulates grain sizet; regulates plant height; regulates long day flowering | [ |
OsMADS62 | 参与调控花粉萌发Involved in regulating pollen germination | [ |
OsMADS63 | 参与调控花粉萌发Involved in regulating pollen germination | [ |
OsMADS68 | 参与调控花粉萌发Involved in regulating pollen germination | [ |
表1 水稻MADS-box蛋白生物学功能
Table 1 Biological functions of rice MADS-box proteins
基因名称 Gene name | 生物学功能 Biological functions | 参考文献 References |
---|---|---|
OsMADS1 | 调控开花;控制小花育性;控制外稃和内稃特定细胞类型的分化;控制小花分生组织规范;调节籽粒大小和产量;调控株高 Regulates flowering; control floret fertility; control differentiation of specific cell types in lemma and palea; control floret meristem specification; regulates seed size and yield; regulates plant height | [ |
OsMADS2 | 调控水稻浆片形成;调控雄蕊发育;控制水稻小花第二轮器官的大小形状和分化 Regulates rice paddy sheet formation; regulates stamen development; control size, shape and differentiation of rice floret secondary organs | [ |
OsMADS3 | 调节花器官和花分生组织发育;维持雄蕊发育;调控胚珠发育 Regulates floral organ and floral meristem development; maintains stamen development; regulates ovule development | [ |
OsMADS4 | 调控水稻雄蕊发育Regulates rice stamen development | [ |
OsMADS5 | 调控小穗形态建成;调控水稻穗发育;抑制根的伸长;限制花序分枝 Regulates spikelet morphogenesis; regulates rice spike development; inhibits root elongation; limits inflorescence branching | [ |
OsMADS6 | 促进胚乳中养分积累;调控花器官和分生组织发育;促进提前开花;决定内稃发育,影响水稻产量和品质;维持外稃发育 Promotes nutrient accumulation in endosperm; regulates development of floral organs and meristematic tissues; promotes early flowering; determines palea development; affects rice yield and quality; maintains lemma development | [ |
OsMADS7 | 调控穗发育; 在高温下维持直链淀粉含量稳定;调控开花时间 Regulates spike development; maintains stable amylose content at high temperatures; regulates flowering time | [ |
OsMADS8 | 参与绒毡层的发育;调节花器官发育和种子萌发 Involved in the development of tapetum; regulates floral organ development and seed germination | [ |
OsMADS13 | 调控胚珠发育;确定花器官和分生组织形成 Regulates ovule development; determines the formation of floral organs and meristematic tissues | [ |
OsMADS14 | 参与贮藏淀粉的合成Involved in storage starch synthesis | [ |
OsMADS15 | 调控生殖习性Regulates reproductive habits | [ |
OsMADS16 | 调控花器官发育Regulates floral organ development | [ |
OsMADS17 | 参与花器官发育;增加穗粒数和粒重Involved in floral organ development; increases grain number and grain weight | [ |
OsMADS18 | 诱导提前开花;调控花序分生组织和植物形态建成;参与ABA响应 Induces early flowering; regulates inflorescence meristem organization and plant morphogenesis; involved in ABA response | [ |
OsMADS22 | 参与BR响应;调控花器官发育Involved in BR response; regulates floral organ development | [ |
OsMADS23 | 调控干旱和盐胁迫耐受性; 调节植株缺水耐受性 Regulates drought and salt stress tolerance; regulates plant water deficit tolerance | [ |
OsMADS25 | 调节根的生长发育以及耐盐性Regulates root growth and development and salt tolerance | [ |
OsMADS26 | 参与稻瘟病菌和白叶枯病菌的抗性以及耐旱性 Involved in resistance to Magnaporthe grisea and Xanthomonas oryzae, and drought tolerance | [ |
OsMADS27 | 调节根的生长发育以及耐盐性Regulates root development and salt tolerance | [ |
OsMADS29 | 控制水稻种子发育过程中母体组织细胞的退化;调控胚和胚乳的发育 Controls the degeneration of maternal tissue cells during rice seed development; regulates embryo and endosperm development | [ |
OsMADS32 | 调控花器官发育Regulates floral organ development | [ |
OsMADS34 | 调控花序和小穗发育;限制花序分枝;调控籽粒大小和产量;维持空颖壳 Regulates inflorescence and spikelet development; restricts inflorescence branching; regulates grain size and yield; maintains empty glumes | [ |
OsMADS47 | 调控初生根、胚芽鞘发育,影响叶倾角 Regulates development of primary roots and embryo sheaths; affects leaf inclination angle | [ |
OsMADS50 | 调控长日照开花; 导致愈伤期的极度早花 Regulates flowering in long days; leads to extremely early flowering at the callus stage | [ |
OsMADS51 | 调控短日照开花Regulates short-day flowering | [ |
OsMADS55 | 调控水稻分蘖和籽粒大小Regulates tillering and grain size in rice | [ |
OsMADS56 | 调控长日照开花; 调控籽粒大小和千粒重 Regulates flowering in long sunlight; regulates grain size and thousand-grain weight | [ |
OsMADS57 | 调控低温和高盐耐受性;调控株高发育、穗颈节间伸长和分蘖;调节长距离氮素转运和根系伸长 Regulates low temperature and high salt tolerance; regulates plant height development, internode elongation and tillering; regulates long distance nitrogen transport and root elongation | [ |
OsMADS58 | 调控花器官发育Regulates floral organ development | [ |
OsMADS60 | 调控籽粒大小;调控株高;调控长日照开花Regulates grain sizet; regulates plant height; regulates long day flowering | [ |
OsMADS62 | 参与调控花粉萌发Involved in regulating pollen germination | [ |
OsMADS63 | 参与调控花粉萌发Involved in regulating pollen germination | [ |
OsMADS68 | 参与调控花粉萌发Involved in regulating pollen germination | [ |
[1] | De Bodt S, Raes J, Florquin K, et al. Genomewide structural annotation and evolutionary analysis of the type I MADS-box genes in plants[J]. J Mol Evol, 2003, 56(5): 573-586. |
[2] | Theissen G. Development of floral organ identity: stories from the MADS house[J]. Curr Opin Plant Biol, 2001, 4(1): 75-85. |
[3] | Passmore S, Maine GT, Elble R, et al. Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MAT alpha cells[J]. J Mol Biol, 1988, 204(3): 593-606. |
[4] | Yanofsky MF, Ma H, Bowman JL, et al. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors[J]. Nature, 1990, 346(6279): 35-39. |
[5] | Sommer H, Beltrán JP, Huijser P, et al. Deficiens a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors[J]. EMBO J, 1990, 9(3): 605-613. |
[6] | Norman C, Runswick M, Pollock R, et al. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element[J]. Cell, 1988, 55(6): 989-1003. |
[7] | Henschel K, Kofuji R, Hasebe M, et al. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens[J]. Mol Biol Evol, 2002, 19(6): 801-814. |
[8] | Kaufmann K, Melzer R, Theissen G. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants[J]. Gene, 2005, 347(2): 183-198. |
[9] | Schwarz-Sommer Z, Huijser P, Nacken W, et al. Genetic control of flower development by homeotic genes in antirrhinum majus[J]. Science, 1990, 250(4983): 931-936. |
[10] | Krizek BA, Meyerowitz EM. Mapping the protein regions responsible for the functional specificities of the Arabidopsis MADS domain organ-identity proteins[J]. Proc Natl Acad Sci USA, 1996, 93(9): 4063-4070. |
[11] | Fan HY, Hu Y, Tudor M, et al. Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins[J]. Plant J, 1997, 12(5): 999-1010. |
[12] | Davies B, Egea-Cortines M, de Andrade Silva E, et al. Multiple interactions amongst floral homeotic MADS box proteins[J]. EMBO J, 1996, 15(16): 4330-4343. |
[13] | Chung YY, Kim SR, Finkel D, et al. Early flowering and reduced apical dominance result from ectopic expression of a rice MADS-box gene[J]. Plant Mol Biol, 1994, 26(2): 657-665. |
[14] | Jeon JS, Jang S, Lee S, et al. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development[J]. Plant Cell, 2000, 12(6): 871-884. |
[15] | Agrawal GK, Abe K, Yamazaki M, et al. Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene[J]. Plant Mol Biol, 2005, 59(1): 125-135. |
[16] | Prasad K, Parameswaran S, Vijayraghavan U. OsMADS1, a rice MADS-box factor, controls differentiation of specific cell types in the lemma and palea and is an early-acting regulator of inner floral organs[J]. Plant J, 2005, 43(6): 915-928. |
[17] | Wang KJ, Tang D, Hong LL, et al. DEP and AFO regulate reproductive habit in rice[J]. PLoS Genet, 2010, 6(1): e1000818. |
[18] | Khanday I, Yadav SR, Vijayraghavan U. Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways[J]. Plant Physiol, 2013, 161(4): 1970-1983. |
[19] | Hu Y, Liang WQ, Yin CS, et al. Interactions of OsMADS1 with floral homeotic genes in rice flower development[J]. Mol Plant, 2015, 8(9): 1366-1384. |
[20] | Liu Q, Han RX, Wu K, et al. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice[J]. Nat Commun, 2018, 9(1): 852. |
[21] | Wang L, Zeng XQ, Zhuang H, et al. Ectopic expression of OsMADS1 caused dwarfism and spikelet alteration in rice[J]. Plant Growth Regul, 2017, 81(3): 433-442. |
[22] | Yao SG, Ohmori S, Kimizu M, et al. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development[J]. Plant Cell Physiol, 2008, 49(5): 853-857. |
[23] | Yadav SR, Prasad K, Vijayraghavan U. Divergent regulatory OsMADS2 functions control size, shape and differentiation of the highly derived rice floret second-whorl organ[J]. Genetics, 2007, 176(1): 283-294. |
[24] | Dreni L, Ravasio A, Gonzalez-Schain N, et al. Functionally divergent splicing variants of the rice AGAMOUS ortholog OsMADS3 are evolutionary conserved in grasses[J]. Front Plant Sci, 2020, 11: 637. |
[25] | Hu LF, Liang WQ, Yin CS, et al. Rice MADS3 regulates ROS homeostasis during late anther development[J]. Plant Cell, 2011, 23(2): 515-533. |
[26] | Yasui Y, Tanaka W, Sakamoto T, et al. Genetic enhancer analysis reveals that FLORAL ORGAN NUMBER2 and OsMADS3 co-operatively regulate maintenance and determinacy of the flower meristem in rice[J]. Plant Cell Physiol, 2017, 58(5): 893-903. |
[27] | Zhu WW, Yang L, Wu D, et al. Rice SEPALLATA genes OsMADS5 and OsMADS34 cooperate to limit inflorescence branching by repressing the TERMINAL FLOWER1-like gene RCN4[J]. New Phytol, 2022, 233(4): 1682-1700. |
[28] | Wu D, Liang WQ, Zhu WW, et al. Loss of LOFSEP transcription factor function converts spikelet to leaf-like structures in rice[J]. Plant Physiol, 2018, 176(2): 1646-1664. |
[29] | Guo XL, Chen YK, Hu YB, et al. OsMADS5 interacts with OsSPL14/17 to inhibit rice root elongation by restricting cell proliferation of root meristem under ammonium supply[J]. Plant J, 2023, 116(1): 87-99. |
[30] | Zhang J, Nallamilli BR, Mujahid H, et al. OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice(Oryza sativa)[J]. Plant J, 2010, 64(4): 604-617. |
[31] | Duan YL, Xing Z, Diao ZZ, et al. Characterization of Osmads6-5, a null allele, reveals that OsMADS6 is a critical regulator for early flower development in rice(Oryza sativa L.)[J]. Plant Mol Biol, 2012, 80(4/5): 429-442. |
[32] | Yu XQ, Xia SS, Xu QK, et al. ABNORMAL FLOWER AND GRAIN 1 encodes OsMADS6 and determines palea identity and affects rice grain yield and quality[J]. Sci China Life Sci, 2020, 63(2): 228-238. |
[33] | Cui RF, Han JK, Zhao SZ, et al. Functional conservation and diversification of class E floral homeotic genes in rice(Oryza sativa)[J]. Plant J, 2010, 61(5): 767-781. |
[34] | Wang JD, Lo SF, Li YS, et al. Ectopic expression of OsMADS45 activates the upstream genes Hd3a and RFT1 at an early development stage causing early flowering in rice[J]. Bot Stud, 2013, 54(1): 12. |
[35] | Zhang H, Xu H, Feng MJ, et al. Suppression of OsMADS7 in rice endosperm stabilizes amylose content under high temperature stress[J]. Plant Biotechnol J, 2018, 16(1): 18-26. |
[36] | Kim SH, Ji SD, Lee HS, et al. A novel embryo phenotype associated with interspecific hybrid weakness in rice is controlled by the MADS-domain transcription factor OsMADS8[J]. Front Plant Sci, 2022, 12: 778008. |
[37] | Dreni L, Jacchia S, Fornara F, et al. The D-lineage MADS-box gene OsMADS13 controls ovule identity in rice[J]. Plant J, 2007, 52(4): 690-699. |
[38] | Osnato M, Lacchini E, Pilatone A, et al. Transcriptome analysis reveals rice MADS13 as an important repressor of the carpel development pathway in ovules[J]. J Exp Bot, 2021, 72(2): 398-414. |
[39] | Feng TT, Wang LL, Li YL, et al. OsMADS14 and NF-YB1 cooperate in the direct activation of OsAGPL2 and Waxy during starch synthesis in rice endosperm[J]. New Phytol, 2022, 234(1): 77-92. |
[40] | Yun DP, Liang WQ, Dreni L, et al. OsMADS16 genetically interacts with OsMADS3 and OsMADS58 in specifying floral patterning in rice[J]. Mol Plant, 2013, 6(3): 743-756. |
[41] | Li YJ, Wu S, Huang YY, et al. OsMADS17 simultaneously increases grain number and grain weight in rice[J]. Nature Communications, 2023, 14(1): 3098. |
[42] | Fornara F, Parenicová L, Falasca G, et al. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes[J]. Plant Physiol, 2004, 135(4): 2207-2219. |
[43] | Yin XM, Liu X, Xu BX, et al. OsMADS18, a membrane-bound MADS-box transcription factor, modulates plant architecture and the abscisic acid response in rice[J]. J Exp Bot, 2019, 70(15): 3895-3909. |
[44] | Sentoku N, Kato H, Kitano H, et al. OsMADS22, an STMADS11-like MADS-box gene of rice, is expressed in non-vegetative tissues and its ectopic expression induces spikelet meristem indeterminacy[J]. Mol Genet Genom, 2005, 273(1): 1-9. |
[45] | Lee JH, Park SH, Ahn JH, et al. Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins[J]. Plant Sci, 2012, 185/186: 97-104. |
[46] | Li XX, Yu B, Wu Q, et al. OsMADS23 phosphorylated by SAPK9 confers drought and salt tolerance by regulating ABA biosynthesis in rice[J]. PLoS Genet, 2021, 17(8): e1009699. |
[47] | Lv QL, Li XX, Jin XK, et al. Rice OsPUB16 modulates the ‘SAPK9-OsMADS23-OsAOC’ pathway to reduce plant water-deficit tolerance by repressing ABA and JA biosynthesis[J]. PLoS Genet, 2022, 18(11): e1010520. |
[48] | Yu CY, Liu YH, Zhang AD, et al. MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice[J]. PLoS One, 2015, 10(8): e0135196. |
[49] | Xu N, Chu YL, Chen HL, et al. Rice transcription factor OsMADS25 modulates root growth and confers salinity tolerance via the ABA-mediated regulatory pathway and ROS scavenging[J]. PLoS Genet, 2018, 14(10): e1007662. |
[50] | Wu JY, Yu Y, Hunag LL, et al. Overexpression of MADS-box transcription factor OsMADS25 enhances salt stress tolerance in rice and Arabidopsis[J]. Plant Growth Regul, 2020, 90(1): 163-171. |
[51] | Lee S, Woo YM, Ryu SI, et al. Further characterization of a rice AGL12 group MADS-box gene, OsMADS26[J]. Plant Physiol, 2008, 147(1): 156-168. |
[52] | Khong GN, Pati PK, Richaud F, et al. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice[J]. Plant Physiol, 2015, 169(4): 2935-2949. |
[53] | Pachamuthu K, Hari Sundar V, Narjala A, et al. Nitrate-dependent regulation of miR444-OsMADS27 signalling cascade controls root development in rice[J]. J Exp Bot, 2022, 73(11): 3511-3530. |
[54] | Alfatih A, Zhang J, Song Y, et al. Nitrate-responsive OsMADS27 promotes salt tolerance in rice[J]. Plant Commun, 2023, 4(2): 100458. |
[55] | Yang XL, Wu F, Lin XL, et al. Live and let die - the B(sister)MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice(Oryza sativa)[J]. PLoS One, 2012, 7(12): e51435. |
[56] | Nayar S, Sharma R, Tyagi AK, et al. Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis[J]. J Exp Bot, 2013, 64(14): 4239-4253. |
[57] | Sang XC, Li YF, Luo ZK, et al. CHIMERIC FLORAL ORGANS1, encoding a monocot-specific MADS box protein, regulates floral organ identity in rice[J]. Plant Physiol, 2012, 160(2): 788-807. |
[58] | Wang HH, Zhang L, Cai Q, et al. OsMADS32 interacts with PI-like proteins and regulates rice flower development[J]. J Integr Plant Biol, 2015, 57(5): 504-513. |
[59] | Hu Y, Wang L, Jia R, et al. Rice transcription factor MADS32 regulates floral patterning through interactions with multiple floral homeotic genes[J]. J Exp Bot, 2021, 72(7): 2434-2449. |
[60] | Meng QC, Li XF, Zhu WW, et al. Regulatory network and genetic interactions established by OsMADS34 in rice inflorescence and spikelet morphogenesis[J]. J Integr Plant Biol, 2017, 59(9): 693-707. |
[61] | Zhang Y, Yu HP, Liu J, et al. Loss of function of OsMADS34 leads to large sterile lemma and low grain yield in rice(Oryza sativa L.)[J]. Mol Breed, 2016, 36(11): 147. |
[62] | Ren DY, Rao YC, Leng YJ, et al. Regulatory role of OsMADS34 in the determination of glumes fate, grain yield, and quality in rice[J]. Front Plant Sci, 2016, 7: 1853. |
[63] | Lin XL, Wu F, Du XQ, et al. The pleiotropic SEPALLATA-like gene OsMADS34 reveals that the ‘empty glumes’ of rice(Oryza sativa)spikelets are in fact rudimentary lemmas[J]. New Phytol, 2014, 202(2): 689-702. |
[64] | Duan K, Li L, Hu P, et al. A brassinolide-suppressed rice MADS-box transcription factor, OsMDP1, has a negative regulatory role in BR signaling[J]. Plant J, 2006, 47(4): 519-531. |
[65] | Lee S, Kim J, Han JJ, et al. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR OF OVEREXPRESSION OF CO 1/AGAMOUS-LIKE 20(SOC1/AGL20)ortholog in rice[J]. Plant J, 2004, 38(5): 754-764. |
[66] | Ryu CH, Lee S, Cho LH, et al. OsMADS50 and OsMADS56 function antagonistically in regulating long day(LD)-dependent flowering in rice[J]. Plant Cell Environ, 2009, 32(10): 1412-1427. |
[67] | Kim SL, Lee S, Kim HJ, et al. OsMADS51 is a short-day flowering promoter that functions upstream of Ehd1, OsMADS14, and Hd3a[J]. Plant Physiol, 2007, 145(4): 1484-1494. |
[68] | Mao DH, Tao ST, Li X, et al. The harbinger transposon-derived gene PANDA epigenetically coordinates panicle number and grain size in rice[J]. Plant Biotechnol J, 2022, 20(6): 1154-1166. |
[69] | Zhan PL, Ma SP, Xiao ZL, et al. Natural variations in grain length 10(GL10)regulate rice grain size[J]. J Genet Genomics, 2022, 49(5): 405-413. |
[70] | Chu YL, Xu N, Wu Q, et al. Rice transcription factor OsMADS57 regulates plant height by modulating gibberellin catabolism[J]. Rice, 2019, 12(1): 38. |
[71] | Guo SY, Xu YY, Liu HH, et al. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14[J]. Nat Commun, 2013, 4: 1566. |
[72] | Chen LP, Zhao Y, Xu SJ, et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. New Phytol, 2018, 218(1): 219-231. |
[73] | Shen LP, Tian F, Cheng ZK, et al. OsMADS58 stabilizes gene regulatory circuits during rice stamen development[J]. Plants, 2022, 11(21): 2899. |
[74] | Zhang TH, Wang JF, Luo R, et al. OsHLS 1 regulates plant height and development by controlling active gibberellin accumulation in rice(Oryza sativa L.)[J]. Plant Sci, 2023, 326: 111508. |
[75] | Liu Y, Cui SJ, Wu F, et al. Functional conservation of MIKC*-Type MADS box genes in Arabidopsis and rice pollen maturation[J]. Plant Cell, 2013, 25(4): 1288-1303. |
[76] | Kim EJ, Hong WJ, Kim YJ, et al. Transcriptome analysis of triple mutant for OsMADS62, OsMADS63, and OsMADS68 reveals the downstream regulatory mechanism for pollen germination in rice(Oryza sativa)[J]. Int J Mol Sci, 2021, 23(1): 239. |
[1] | 朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180. |
[2] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[3] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[4] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[5] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[6] | 吴丁洁, 陈盈盈, 徐静, 刘源, 张航, 李瑞丽. 植物赤霉素氧化酶及其功能研究进展[J]. 生物技术通报, 2024, 40(7): 43-54. |
[7] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[8] | 苑海鹏, 叶云舒, 司皓, 纪秋研, 张玉红. 丛枝菌根真菌对植物逆境胁迫抗性及次生代谢产物合成的影响[J]. 生物技术通报, 2024, 40(6): 45-56. |
[9] | 陈盈盈, 吴丁洁, 刘源, 张航, 刘艳娇, 王晶宇, 李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 12-22. |
[10] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[11] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[12] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[13] | 付威, 韦素云, 陈赢男. 植物生长发育动态QTL解析研究进展[J]. 生物技术通报, 2024, 40(2): 9-19. |
[14] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[15] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||