生物技术通报 ›› 2025, Vol. 41 ›› Issue (4): 243-255.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0883
• 研究报告 • 上一篇
黄金恒1(
), 黄茜1, 张家燕1, 周新裕1, 廖沛然1,2(
), 杨全1,2,3(
)
收稿日期:2024-09-11
出版日期:2025-04-26
发布日期:2025-04-25
通讯作者:
杨全,男,博士,教授,研究方向 :中药资源;E-mail: yangquan7208@vip.163.com作者简介:黄金恒,男,硕士研究生,研究方向 :中药资源开发与品质评价;E-mail: 2687881471@qq.com
基金资助:
HUANG Jin-heng1(
), HUANG Xi1, ZHANG Jia-yan1, ZHOU Xin-yu1, LIAO Pei-ran1,2(
), YANG Quan1,2,3(
)
Received:2024-09-11
Published:2025-04-26
Online:2025-04-25
摘要:
目的 C3H家族基因在调控植物生长发育中起着重要作用,探究广金钱草C3H基因家族的特性及功能,为研究其在广金钱草生理和形态形成中的作用奠定基础。 方法 基于‘广药大1号’和野生广金钱草的转录组数据比较,鉴定广金钱草C3H家族基因,利用生物信息技术分析基因的理化性质、染色体位置、系统发育关系、保守基序和结构域,以及使用实时荧光定量PCR(RT-qPCR)技术分析C3H家族基因在广金钱草不同组织和品种中的表达模式,并对广金钱草C3H基因与类黄酮合成关键基因进行相关性分析,同时测定不同品种茎尖、茎基总黄酮含量。 结果 广金钱草C3H基因家族的27个成员分布在9条染色体上,多编码碱性、不稳定和亲水性蛋白质。系统进化分析显示,广金钱草C3H家族基因分为3个组群,同一组群成员之间相对保守;保守基序和结构域分析显示,数量出现最多的motif与生长素调控相关,广金钱草C3H家族成员存在与ANKYR等结构域协同作用的情况。表达模式分析显示,广金钱草C3H家族基因主要在广金钱草的茎中发挥作用,且在‘广药大1号’茎尖处高表达。相关性分析发现,广金钱草C3H家族基因表达量与类黄酮生物合成关键基因表达量呈正相关。总黄酮含量测定发现,在茎尖部位,‘广药大1号’的总黄酮含量显著高于野生匍匐广金钱草,在茎基情况相反。 结论 GsC3H家族基因可能通过调控黄酮类化合物在茎段的生物合成间接影响‘广药大1号’广金钱草的农艺性状。
黄金恒, 黄茜, 张家燕, 周新裕, 廖沛然, 杨全. 广金钱草C3H基因家族鉴定及不同品种表达分析[J]. 生物技术通报, 2025, 41(4): 243-255.
HUANG Jin-heng, HUANG Xi, ZHANG Jia-yan, ZHOU Xin-yu, LIAO Pei-ran, YANG Quan. Identification and Expression Analysis of the C3H Gene Family in Grona styracifolia across Different Varieties[J]. Biotechnology Bulletin, 2025, 41(4): 243-255.
正向引物名称 Forward primer name | 正向引物序列 Forward primer sequence (5′‒3′) | 反向引物名称 Reverse primer name | 反向引物序列 Reverse primer sequence (5′‒3′) |
|---|---|---|---|
| GsC3H1f | AACCAGAACCATTGGAGGAAA | GsC3H1r | TGATAGGCGACAGTTACTACCAAAT |
| GsC3H2f | CTTCCCTTGGAGCATACCCT | GsC3H2r | GAGGCACATAAGATTGAAGACCA |
| GsC3H3f | GCACTGTCTCCATCTCCGTTAC | GsC3H3r | TTGACCATCTGCTTTGACCC |
| GsC3H4f | GTCAAATGCCGTCAACAGGA | GsC3H4r | CGCAGATAGCGAAGGAAGGT |
| GsC3H5f | CGATTCCGCAGCACTTTCC | GsC3H5r | CACCCTTACCAGTTTCTTCGTCACA |
| GsC3H6f | CAACGCAGGTATGGAATCAAA | GsC3H6r | GGTAGACCCTTGTCACTGAGGTT |
| GsC3H7f | ATGGTGTAGTTACCTTATGTGGGATG | GsC3H7r | TGCTCGGACCTCTTGTTTCG |
| GsC3H8f | TACAAAGCGGAGCCAGAGC | GsC3H8r | GGTGGTAGCAGGTGTTAGAGGAGT |
| GsC3H9f | TCAAAGTCCGACCTTGTTCACG | GsC3H9r | TGCAGCCAGCACTCGAAAA |
| GsC3H10f | CCCCTTTGTTCACCCTGGAG | GsC3H10r | CACAGCTTGGTCCGATACTGG |
| GsC3H11f | GCTCAACTTACTAACCTGTCAGCCTC | GsC3H11r | CCGAAAGGCAGTCTTAGAGTCATC |
| GsC3H12f | GGATCTCCCAGCAAGATTGAC | GsC3H12r | GCTGCCGCTCTTTGAGTATCAT |
| GsC3H13f | CCCTCAAGATTCACTGTGGATG | GsC3H13r | TCTTTCTGGGAACTCGCCTAT |
| GsC3H14f | AGGCTGGGATTGCTGGAA | GsC3H14r | GAGATTGGACGGTAGGATAAACA |
| GsC3H15f | AAACGAAACGGACGCTGAC | GsC3H15r | GCATCGCCGAACTTTGAAC |
| GsC3H16f | TTCTCGCTCTGATCCGTCG | GsC3H16r | GCTCCAACAACCGTTCCAC |
| GsC3H17f | GCAAAGCGAAGCCAAAGTT | GsC3H17r | CTGAAAGGGCAGAGGACACC |
| GsC3H18f | CAATAGGTCGTCTTGGTGGTCG | GsC3H18r | CGCTGATCTTTGCCGTAGCA |
| GsC3H19f | CGAACACGCCGTCAACCTT | GsC3H19r | CCAAATGGGCAGCCAGAAG |
| GsC3H20f | TGAGTCTTACCCTGAGCGTCC | GsC3H20r | TGTAGCTCTTACTGCCGCATC |
| GsC3H21f | GAAGAGGAGCAGGGTAAGAAGC | GsC3H21r | CTGGCAAGTTGTGAGCAAGAGGT |
| GsC3H22f | GTCGTTTCAACCACCCTCG | GsC3H22r | TTTCTCACCCACTCGCAATG |
| GsC3H23f | ACAATGGTGACTCCGAGACAAC | GsC3H23r | GCATGTACCCGCCCTGAAT |
| GsC3H24f | AGGTGCTCCTTGTGACATTGTT | GsC3H24r | TGATTGAAAGCTCATCCCAGA |
| GsC3H25f | GGACGAAGATTTGTTGAAGCG | GsC3H25r | TCCTTCCAACGGAGGGTGT |
| GsC3H26f | TTTCTCCGATTCGCCACC | GsC3H26r | CGAGTTTAACATTCCGCATTG |
| GsC3H27f | CACCGAGCAAATCCAACCG | GsC3H27r | CACAGGAATAAGCATCGACCG |
| EF-1αf | GAGATGCCTGGTCTATTGTGGG | EF-1αr | GATTGGCTCAACTGTCAGATGCT |
表1 定量引物序列信息
Table 1 Quantitative primer sequence information
正向引物名称 Forward primer name | 正向引物序列 Forward primer sequence (5′‒3′) | 反向引物名称 Reverse primer name | 反向引物序列 Reverse primer sequence (5′‒3′) |
|---|---|---|---|
| GsC3H1f | AACCAGAACCATTGGAGGAAA | GsC3H1r | TGATAGGCGACAGTTACTACCAAAT |
| GsC3H2f | CTTCCCTTGGAGCATACCCT | GsC3H2r | GAGGCACATAAGATTGAAGACCA |
| GsC3H3f | GCACTGTCTCCATCTCCGTTAC | GsC3H3r | TTGACCATCTGCTTTGACCC |
| GsC3H4f | GTCAAATGCCGTCAACAGGA | GsC3H4r | CGCAGATAGCGAAGGAAGGT |
| GsC3H5f | CGATTCCGCAGCACTTTCC | GsC3H5r | CACCCTTACCAGTTTCTTCGTCACA |
| GsC3H6f | CAACGCAGGTATGGAATCAAA | GsC3H6r | GGTAGACCCTTGTCACTGAGGTT |
| GsC3H7f | ATGGTGTAGTTACCTTATGTGGGATG | GsC3H7r | TGCTCGGACCTCTTGTTTCG |
| GsC3H8f | TACAAAGCGGAGCCAGAGC | GsC3H8r | GGTGGTAGCAGGTGTTAGAGGAGT |
| GsC3H9f | TCAAAGTCCGACCTTGTTCACG | GsC3H9r | TGCAGCCAGCACTCGAAAA |
| GsC3H10f | CCCCTTTGTTCACCCTGGAG | GsC3H10r | CACAGCTTGGTCCGATACTGG |
| GsC3H11f | GCTCAACTTACTAACCTGTCAGCCTC | GsC3H11r | CCGAAAGGCAGTCTTAGAGTCATC |
| GsC3H12f | GGATCTCCCAGCAAGATTGAC | GsC3H12r | GCTGCCGCTCTTTGAGTATCAT |
| GsC3H13f | CCCTCAAGATTCACTGTGGATG | GsC3H13r | TCTTTCTGGGAACTCGCCTAT |
| GsC3H14f | AGGCTGGGATTGCTGGAA | GsC3H14r | GAGATTGGACGGTAGGATAAACA |
| GsC3H15f | AAACGAAACGGACGCTGAC | GsC3H15r | GCATCGCCGAACTTTGAAC |
| GsC3H16f | TTCTCGCTCTGATCCGTCG | GsC3H16r | GCTCCAACAACCGTTCCAC |
| GsC3H17f | GCAAAGCGAAGCCAAAGTT | GsC3H17r | CTGAAAGGGCAGAGGACACC |
| GsC3H18f | CAATAGGTCGTCTTGGTGGTCG | GsC3H18r | CGCTGATCTTTGCCGTAGCA |
| GsC3H19f | CGAACACGCCGTCAACCTT | GsC3H19r | CCAAATGGGCAGCCAGAAG |
| GsC3H20f | TGAGTCTTACCCTGAGCGTCC | GsC3H20r | TGTAGCTCTTACTGCCGCATC |
| GsC3H21f | GAAGAGGAGCAGGGTAAGAAGC | GsC3H21r | CTGGCAAGTTGTGAGCAAGAGGT |
| GsC3H22f | GTCGTTTCAACCACCCTCG | GsC3H22r | TTTCTCACCCACTCGCAATG |
| GsC3H23f | ACAATGGTGACTCCGAGACAAC | GsC3H23r | GCATGTACCCGCCCTGAAT |
| GsC3H24f | AGGTGCTCCTTGTGACATTGTT | GsC3H24r | TGATTGAAAGCTCATCCCAGA |
| GsC3H25f | GGACGAAGATTTGTTGAAGCG | GsC3H25r | TCCTTCCAACGGAGGGTGT |
| GsC3H26f | TTTCTCCGATTCGCCACC | GsC3H26r | CGAGTTTAACATTCCGCATTG |
| GsC3H27f | CACCGAGCAAATCCAACCG | GsC3H27r | CACAGGAATAAGCATCGACCG |
| EF-1αf | GAGATGCCTGGTCTATTGTGGG | EF-1αr | GATTGGCTCAACTGTCAGATGCT |
基因名 Gene name | 氨基酸数量 Amino acid count/aa | 相对分子质量 Relative molecular mass/Da | 等电点 Isoelectric point | 不稳定系数 Instability index | 脂肪系数 Aliphatic index | 亲水性 Hydrophilicity |
|---|---|---|---|---|---|---|
| GsC3H1 | 495 | 55 557.14 | 5.54 | 49.44 | 70.95 | -0.761 |
| GsC3H2 | 424 | 46 321.03 | 8.10 | 58.80 | 54.81 | -0.586 |
| GsC3H3 | 730 | 79 921.63 | 5.79 | 60.57 | 69.51 | -0.460 |
| GsC3H4 | 371 | 40 788.29 | 8.00 | 49.81 | 62.53 | -0.705 |
| GsC3H5 | 480 | 52 287.69 | 5.29 | 59.91 | 51.79 | -0.785 |
| GsC3H6 | 493 | 54 600.68 | 4.87 | 60.30 | 49.80 | -0.936 |
| GsC3H7 | 433 | 46 906.96 | 7.49 | 24.93 | 75.59 | -0.212 |
| GsC3H8 | 746 | 81 503.49 | 5.64 | 51.67 | 73.35 | -0.422 |
| GsC3H9 | 658 | 72 045.97 | 8.36 | 63.21 | 68.50 | -0.440 |
| GsC3H10 | 724 | 77 943.18 | 5.58 | 59.10 | 71.93 | -0.346 |
| GsC3H11 | 724 | 81 391.28 | 8.48 | 47.52 | 57.36 | -0.991 |
| GsC3H12 | 703 | 76 020.01 | 6.18 | 55.96 | 66.93 | -0.437 |
| GsC3H13 | 442 | 48 626.94 | 8.41 | 60.92 | 57.87 | -0.514 |
| GsC3H14 | 426 | 46 874.77 | 8.52 | 64.47 | 52.72 | -0.587 |
| GsC3H15 | 358 | 39 956.98 | 6.83 | 69.76 | 51.70 | -0.649 |
| GsC3H16 | 362 | 38 873.85 | 8.43 | 61.71 | 55.47 | -0.520 |
| GsC3H17 | 677 | 74 159.42 | 6.28 | 59.02 | 67.19 | -0.501 |
| GsC3H18 | 295 | 31 251.62 | 9.39 | 40.62 | 57.32 | -0.466 |
| GsC3H19 | 296 | 31 324.95 | 9.43 | 33.71 | 63.38 | -0.409 |
| GsC3H20 | 469 | 50 124.30 | 8.92 | 55.90 | 61.11 | -0.418 |
| GsC3H21 | 350 | 388 98.46 | 7.26 | 50.05 | 60.00 | -0.722 |
| GsC3H22 | 487 | 508 96.03 | 8.63 | 66.72 | 53.72 | -0.384 |
| GsC3H23 | 323 | 35 624.70 | 8.42 | 56.44 | 46.87 | -0.724 |
| GsC3H24 | 366 | 40 294.76 | 8.06 | 47.42 | 53.03 | -0.700 |
| GsC3H25 | 522 | 59 915.16 | 6.69 | 62.08 | 63.14 | -0.912 |
| GsC3H26 | 255 | 28 686.03 | 8.25 | 59.92 | 49.33 | -0.696 |
| GsC3H27 | 369 | 41 084.06 | 6.94 | 77.35 | 46.75 | -0.696 |
表2 广金钱草C3H基因家族基本信息
Table 2 Basic information of the C3H gene family in G. styracifolia
基因名 Gene name | 氨基酸数量 Amino acid count/aa | 相对分子质量 Relative molecular mass/Da | 等电点 Isoelectric point | 不稳定系数 Instability index | 脂肪系数 Aliphatic index | 亲水性 Hydrophilicity |
|---|---|---|---|---|---|---|
| GsC3H1 | 495 | 55 557.14 | 5.54 | 49.44 | 70.95 | -0.761 |
| GsC3H2 | 424 | 46 321.03 | 8.10 | 58.80 | 54.81 | -0.586 |
| GsC3H3 | 730 | 79 921.63 | 5.79 | 60.57 | 69.51 | -0.460 |
| GsC3H4 | 371 | 40 788.29 | 8.00 | 49.81 | 62.53 | -0.705 |
| GsC3H5 | 480 | 52 287.69 | 5.29 | 59.91 | 51.79 | -0.785 |
| GsC3H6 | 493 | 54 600.68 | 4.87 | 60.30 | 49.80 | -0.936 |
| GsC3H7 | 433 | 46 906.96 | 7.49 | 24.93 | 75.59 | -0.212 |
| GsC3H8 | 746 | 81 503.49 | 5.64 | 51.67 | 73.35 | -0.422 |
| GsC3H9 | 658 | 72 045.97 | 8.36 | 63.21 | 68.50 | -0.440 |
| GsC3H10 | 724 | 77 943.18 | 5.58 | 59.10 | 71.93 | -0.346 |
| GsC3H11 | 724 | 81 391.28 | 8.48 | 47.52 | 57.36 | -0.991 |
| GsC3H12 | 703 | 76 020.01 | 6.18 | 55.96 | 66.93 | -0.437 |
| GsC3H13 | 442 | 48 626.94 | 8.41 | 60.92 | 57.87 | -0.514 |
| GsC3H14 | 426 | 46 874.77 | 8.52 | 64.47 | 52.72 | -0.587 |
| GsC3H15 | 358 | 39 956.98 | 6.83 | 69.76 | 51.70 | -0.649 |
| GsC3H16 | 362 | 38 873.85 | 8.43 | 61.71 | 55.47 | -0.520 |
| GsC3H17 | 677 | 74 159.42 | 6.28 | 59.02 | 67.19 | -0.501 |
| GsC3H18 | 295 | 31 251.62 | 9.39 | 40.62 | 57.32 | -0.466 |
| GsC3H19 | 296 | 31 324.95 | 9.43 | 33.71 | 63.38 | -0.409 |
| GsC3H20 | 469 | 50 124.30 | 8.92 | 55.90 | 61.11 | -0.418 |
| GsC3H21 | 350 | 388 98.46 | 7.26 | 50.05 | 60.00 | -0.722 |
| GsC3H22 | 487 | 508 96.03 | 8.63 | 66.72 | 53.72 | -0.384 |
| GsC3H23 | 323 | 35 624.70 | 8.42 | 56.44 | 46.87 | -0.724 |
| GsC3H24 | 366 | 40 294.76 | 8.06 | 47.42 | 53.03 | -0.700 |
| GsC3H25 | 522 | 59 915.16 | 6.69 | 62.08 | 63.14 | -0.912 |
| GsC3H26 | 255 | 28 686.03 | 8.25 | 59.92 | 49.33 | -0.696 |
| GsC3H27 | 369 | 41 084.06 | 6.94 | 77.35 | 46.75 | -0.696 |
| 基因名 Gene name | α-螺旋 Alpha-helix/% | 延伸链 Extended strand/% | 无规则卷曲 Random coil/% | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|
| GsC3H1 | 50.71 | 6.26 | 43.03 | 细胞核 |
| GsC3H2 | 0.00 | 5.19 | 94.81 | 细胞核 |
| GsC3H3 | 26.85 | 3.70 | 69.45 | 细胞核 |
| GsC3H4 | 25.34 | 1.89 | 72.78 | 细胞核 |
| GsC3H5 | 3.12 | 4.17 | 92.71 | 细胞核 |
| GsC3H6 | 8.52 | 4.06 | 87.42 | 细胞核 |
| GsC3H7 | 2.31 | 40.18 | 57.51 | 叶绿体 |
| GsC3H8 | 33.91 | 2.41 | 63.67 | 细胞核 |
| GsC3H9 | 28.88 | 4.71 | 66.41 | 细胞核 |
| GsC3H10 | 24.59 | 3.59 | 71.82 | 细胞核 |
| GsC3H11 | 9.67 | 1.10 | 89.23 | 细胞核 |
| GsC3H12 | 17.21 | 6.12 | 76.67 | 细胞核 |
| GsC3H13 | 0.00 | 4.75 | 95.25 | 细胞核 |
| GsC3H14 | 1.64 | 4.23 | 94.13 | 细胞核 |
| GsC3H15 | 8.10 | 5.87 | 86.03 | 细胞核 |
| GsC3H16 | 0.00 | 6.35 | 93.65 | 细胞核 |
| GsC3H17 | 24.67 | 4.28 | 71.05 | 细胞核 |
| GsC3H18 | 10.17 | 5.42 | 84.41 | 过氧化物酶体 |
| GsC3H19 | 6.76 | 6.42 | 86.82 | 细胞质 |
| GsC3H20 | 0.00 | 6.18 | 93.82 | 细胞核 |
| GsC3H21 | 7.43 | 2.29 | 90.29 | 线粒体 |
| GsC3H22 | 0.00 | 3.90 | 96.10 | 细胞核 |
| GsC3H23 | 7.43 | 3.10 | 89.47 | 细胞核 |
| GsC3H24 | 17.49 | 3.01 | 79.51 | 细胞核 |
| GsC3H25 | 10.15 | 4.02 | 85.82 | 细胞核 |
| GsC3H26 | 9.41 | 8.24 | 82.35 | 细胞核 |
| GsC3H27 | 13.28 | 6.78 | 79.95 | 细胞核 |
表3 广金钱草C3H基因家族二级结构及亚细胞定位分析
Table 3 Secondary structure and subcellular localization analysis of the C3H gene family in G. styracifolia
| 基因名 Gene name | α-螺旋 Alpha-helix/% | 延伸链 Extended strand/% | 无规则卷曲 Random coil/% | 亚细胞定位 Subcellular localization |
|---|---|---|---|---|
| GsC3H1 | 50.71 | 6.26 | 43.03 | 细胞核 |
| GsC3H2 | 0.00 | 5.19 | 94.81 | 细胞核 |
| GsC3H3 | 26.85 | 3.70 | 69.45 | 细胞核 |
| GsC3H4 | 25.34 | 1.89 | 72.78 | 细胞核 |
| GsC3H5 | 3.12 | 4.17 | 92.71 | 细胞核 |
| GsC3H6 | 8.52 | 4.06 | 87.42 | 细胞核 |
| GsC3H7 | 2.31 | 40.18 | 57.51 | 叶绿体 |
| GsC3H8 | 33.91 | 2.41 | 63.67 | 细胞核 |
| GsC3H9 | 28.88 | 4.71 | 66.41 | 细胞核 |
| GsC3H10 | 24.59 | 3.59 | 71.82 | 细胞核 |
| GsC3H11 | 9.67 | 1.10 | 89.23 | 细胞核 |
| GsC3H12 | 17.21 | 6.12 | 76.67 | 细胞核 |
| GsC3H13 | 0.00 | 4.75 | 95.25 | 细胞核 |
| GsC3H14 | 1.64 | 4.23 | 94.13 | 细胞核 |
| GsC3H15 | 8.10 | 5.87 | 86.03 | 细胞核 |
| GsC3H16 | 0.00 | 6.35 | 93.65 | 细胞核 |
| GsC3H17 | 24.67 | 4.28 | 71.05 | 细胞核 |
| GsC3H18 | 10.17 | 5.42 | 84.41 | 过氧化物酶体 |
| GsC3H19 | 6.76 | 6.42 | 86.82 | 细胞质 |
| GsC3H20 | 0.00 | 6.18 | 93.82 | 细胞核 |
| GsC3H21 | 7.43 | 2.29 | 90.29 | 线粒体 |
| GsC3H22 | 0.00 | 3.90 | 96.10 | 细胞核 |
| GsC3H23 | 7.43 | 3.10 | 89.47 | 细胞核 |
| GsC3H24 | 17.49 | 3.01 | 79.51 | 细胞核 |
| GsC3H25 | 10.15 | 4.02 | 85.82 | 细胞核 |
| GsC3H26 | 9.41 | 8.24 | 82.35 | 细胞核 |
| GsC3H27 | 13.28 | 6.78 | 79.95 | 细胞核 |
图3 广金钱草与拟南芥C3H基因家族的系统进化树蓝、绿、棕色分别表示3个亚族
Fig. 3 Phylogenetic tree of the C3H gene family in G. styracifolia and Arabidopsis thalianaBlue, green, and brown indicate three subgroups respectively
| 基序 Motif | E值 E-value | 基序数 Sites | 序列宽度 Width/aa | 基序序列 Motif sequence |
|---|---|---|---|---|
| motif1 | 2.20E-262 | 8 | 50 | FRMFEFKVRPCSRAYSHDWTECPFVHPGENARRRDPRKYHYSCVPCPEFR |
| motif2 | 5.50E-253 | 8 | 50 | CKKGDMCEYAHGVFECWLHPAQYRTRLCKDGTSCTRRVCFFAHTPEELRP |
| motif3 | 1.90E-159 | 8 | 37 | LNYYGYPLRPGEKECPYYMRTGQCKFGATCKFHHPQP |
| motif4 | 8.70E-113 | 19 | 15 | TGTCKFGDRCKFHHP |
| motif5 | 2.00E-137 | 10 | 38 | QKEHEFPERPGQPECQYYMKTGDCKFGDKCKFHHPRWR |
| motif6 | 1.00E-104 | 7 | 39 | CILSPIGLPLRPGQPICTHYSRYGICKFGPACKFDHPMG |
| motif7 | 1.90E-84 | 9 | 35 | ESEEYPERPGEPDCTYYIRTGGCKYGKTCRFNHPP |
| motif8 | 4.60E-72 | 5 | 50 | IDEVGLWYGRRLGSKQMVYEQRTPLMVAAIYGSIDVLKYILSYSEVDVNR |
| motif9 | 1.30E-70 | 5 | 49 | CGLDKATALHCAVAGGAENAVDVVKLLLEAGADVNCVDANGNRPVDIIV |
| motif10 | 7.50E-39 | 13 | 15 | YPVRIGQPDCQYYMY |
| motif11 | 3.90E-23 | 5 | 33 | MLPGWQVQGAYGPLILPPGMVPFPGWGPYQAPM |
| motif12 | 1.30E-23 | 3 | 49 | PMSPSTNGMSHSSGCWPQPNVPALHLPGSNLQSIRLRSSLNARDIPIDD |
| motif13 | 4.00E-18 | 3 | 29 | LWDQGCEEEPVMERVESGRDIRARMFEKL |
| motif14 | 7.40E-17 | 2 | 50 | IIGKGGVNSKQICRQTGAKLSIREHESDPNLKNIELEGTFEQIKEASNMV |
| motif15 | 3.00E-16 | 5 | 26 | WGSPNGKLDWAVNGDELGKLRRSSSF |
| motif16 | 4.20E-16 | 3 | 47 | KNVEHPLLQASFGVQNSGRMSPRNMEPISPMSSRISMLAQREKQQFR |
| motif17 | 3.00E-15 | 5 | 29 | MEHLTVDTEDSFAALLELAANNDFEGFKR |
| motif18 | 6.10E-15 | 3 | 28 | VFSPTHKSAILNQFQQQQSMLSPVNTSF |
| motif19 | 6.80E-13 | 5 | 15 | LGAWLEQMYLDQLVM |
| motif20 | 2.40E-09 | 5 | 10 | FFKTKLCEKF |
表4 广金钱草C3H基因家族基序信息
Table 4 Motif information G. styracifoliaC3H gene family
| 基序 Motif | E值 E-value | 基序数 Sites | 序列宽度 Width/aa | 基序序列 Motif sequence |
|---|---|---|---|---|
| motif1 | 2.20E-262 | 8 | 50 | FRMFEFKVRPCSRAYSHDWTECPFVHPGENARRRDPRKYHYSCVPCPEFR |
| motif2 | 5.50E-253 | 8 | 50 | CKKGDMCEYAHGVFECWLHPAQYRTRLCKDGTSCTRRVCFFAHTPEELRP |
| motif3 | 1.90E-159 | 8 | 37 | LNYYGYPLRPGEKECPYYMRTGQCKFGATCKFHHPQP |
| motif4 | 8.70E-113 | 19 | 15 | TGTCKFGDRCKFHHP |
| motif5 | 2.00E-137 | 10 | 38 | QKEHEFPERPGQPECQYYMKTGDCKFGDKCKFHHPRWR |
| motif6 | 1.00E-104 | 7 | 39 | CILSPIGLPLRPGQPICTHYSRYGICKFGPACKFDHPMG |
| motif7 | 1.90E-84 | 9 | 35 | ESEEYPERPGEPDCTYYIRTGGCKYGKTCRFNHPP |
| motif8 | 4.60E-72 | 5 | 50 | IDEVGLWYGRRLGSKQMVYEQRTPLMVAAIYGSIDVLKYILSYSEVDVNR |
| motif9 | 1.30E-70 | 5 | 49 | CGLDKATALHCAVAGGAENAVDVVKLLLEAGADVNCVDANGNRPVDIIV |
| motif10 | 7.50E-39 | 13 | 15 | YPVRIGQPDCQYYMY |
| motif11 | 3.90E-23 | 5 | 33 | MLPGWQVQGAYGPLILPPGMVPFPGWGPYQAPM |
| motif12 | 1.30E-23 | 3 | 49 | PMSPSTNGMSHSSGCWPQPNVPALHLPGSNLQSIRLRSSLNARDIPIDD |
| motif13 | 4.00E-18 | 3 | 29 | LWDQGCEEEPVMERVESGRDIRARMFEKL |
| motif14 | 7.40E-17 | 2 | 50 | IIGKGGVNSKQICRQTGAKLSIREHESDPNLKNIELEGTFEQIKEASNMV |
| motif15 | 3.00E-16 | 5 | 26 | WGSPNGKLDWAVNGDELGKLRRSSSF |
| motif16 | 4.20E-16 | 3 | 47 | KNVEHPLLQASFGVQNSGRMSPRNMEPISPMSSRISMLAQREKQQFR |
| motif17 | 3.00E-15 | 5 | 29 | MEHLTVDTEDSFAALLELAANNDFEGFKR |
| motif18 | 6.10E-15 | 3 | 28 | VFSPTHKSAILNQFQQQQSMLSPVNTSF |
| motif19 | 6.80E-13 | 5 | 15 | LGAWLEQMYLDQLVM |
| motif20 | 2.40E-09 | 5 | 10 | FFKTKLCEKF |
图5 广金钱草C3H基因家族进化树(A)、保守基序(B)和保守结构域(C)分析
Fig. 5 Phylogenetic tree (A), conserved domains (B), and conserved motifs (C) analysis of the C3H gene family in G. styracifolia
图6 广金钱草C3H基因家族成员在不同品种、不同部位的表达分析图中不同的小写字母表示统计学上显著差异(P<0.05),相同字母表示无显著差异
Fig. 6 Expression analysis of C3H gene family members in different varieties and tissues of G. styracifoliaIn the figure, different lowercase letters indicate statistically significant differences (P<0.05), while the same letters indicate no significant difference
图7 广金钱草C3H基因家族与类黄酮生物合成相关基因相关性分析(A)及总黄酮测定(B)*表示P<0.05具有显著性差异
Fig. 7 Correlation analysis between G. styracifoliaC3H gene family and flavonoid biosynthesis-related genes (A) and determination of total flavonoids (B)* indicates a significant difference with P<0.05
| 1 | Xie CZ, Zhan T, Huang JQ, et al. Functional characterization of nine critical genes encoding rate-limiting enzymes in the flavonoid biosynthesis of the medicinal herb Grona styracifolia [J]. BMC Plant Biol, 2023, 23(1): 299. |
| 2 | 黄盼, 周改莲, 周文良, 等. 广金钱草的化学成分、药理作用及质量控制研究进展 [J]. 中华中医药学刊, 2021, 39(7): 135-139. |
| Huang P, Zhou GL, Zhou WL, et al. Advances in research on chemical composition, pharmacological action and quality control of Desmodium styracifolium [J]. Chin Arch Tradit Chin Med, 2021, 39(7): 135-139. | |
| 3 | Gao HY, Huang X, Lin PF, et al. Transcriptome-associated metabolomics reveals the molecular mechanism of flavonoid biosynthesis in Desmodium styracifolium (Osbeck.) Merr under abiotic stress [J]. Front Plant Sci, 2024, 15: 1431148. |
| 4 | Hou JB, Chen W, Lu HT, et al. Exploring the therapeutic mechanism of Desmodium styracifolium on oxalate crystal-induced kidney injuries using comprehensive approaches based on proteomics and network pharmacology [J]. Front Pharmacol, 2018, 9: 620. |
| 5 | Chen W, Si YC, Cheng J, et al. Metabolic and network pharmacological analyses of the therapeutic effect of Grona styracifolia on calcium oxalate-induced renal injury [J]. Front Pharmacol, 2021, 12: 652989. |
| 6 | Opryshko V, Prokhach A, Akimov O, et al. Desmodium styracifolium: Botanical and ethnopharmacological insights, phytochemical investigations, and prospects in pharmacology and pharmacotherapy [J]. Heliyon, 2024, 10(3): e25058. |
| 7 | 黄晓莉, 钟磊, 闵远洋, 等. 不同产地广金钱草种质资源综合评价 [J]. 分子植物育种, 2022, 20(23): 7960-7970. |
| Huang XL, Zhong L, Min YY, et al. Comprehensive evaluation of germplasm resources of Desmodium styraci-folium from different habitats [J]. Mol Plant Breed, 2022, 20(23): 7960-7970. | |
| 8 | 曾心宇, 唐谷华, 欧阳健明. 不同羧基含量广金钱草多糖对草酸钙晶体生长、聚集及细胞表面黏附的抑制作用 [J]. 无机化学学报, 2024, 40(8): 1563-1576. |
| Zeng XY, Tang GH, Ouyang JM. Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals [J]. Chin J Inorg Chem, 2024, 40(8): 1563-1576. | |
| 9 | 张会香, 汤霞利, 林军全, 等. 广金钱草不同极性萃取物体外降脂及降血糖活性的比较 [J]. 现代食品科技, 2023, 39(12): 192-198. |
| Zhang HX, Tang XL, Lin JQ, et al. Comparison of the in vitro lipid-lowering and hypoglycemic activities of Desmodium styracifolium extracts with different polarities [J]. Mod Food Sci Technol, 2023, 39(12): 192-198. | |
| 10 | 孙贤多. 广金钱草优良种质筛选及评价研究 [D] . 广州: 广东药科大学, 2019. |
| Sun XD. Research on the screening and evaluation of superior germplasm of Grona styracifolia [D]. Guangzhou: Guangdong Pharmaceutical University, 2019. | |
| 11 | 闵远洋. 广金钱草新品种选育研究 [D]. 广州: 广东药科大学, 2022. |
| Min YY. Study on breeding of new varieties of Desmodium styracifolium [D]. Guangzhou: Guangdong Pharmaceutical University, 2022. | |
| 12 | 尹泽群, 耿菁, 刘莹, 等. 谷子CCCH全基因家族鉴定及非生物胁迫下的表达分析 [J/OL]. 分子植物育种, 2023. . |
| Yin ZQ, Geng J, Liu Y, et al. Identification and expression analysis of the CCCH gene family in foxtail millet under abiotic stress [J/OL]. Mol Plant Breed, 2023. . | |
| 13 | 邢凯峰, 姚杏子, 周军, 等. 冷胁迫下普通油茶CCCH型锌指蛋白基因家族的鉴定和分析 [J]. 经济林研究, 2024, 42(1): 11-19. |
| Xing KF, Yao XZ, Zhou J, et al. Identification and analysis of CCCH type zinc finger protein gene family in Camellia oleifera under cold stress [J]. Non Wood For Res, 2024, 42(1): 11-19. | |
| 14 | 唐春闺, 邓兆龙, 刘琼, 等. 普通烟草CCCH类锌指蛋白家族的全基因组鉴定和表达分析 [J]. 河南农业科学, 2022, 51(4): 48-58. |
| Tang CG, Deng ZL, Liu Q, et al. Genome-wide identification and expression analysis of CCCH type zinc-finger gene family in Nicotiana tabacum [J]. J Henan Agric Sci, 2022, 51(4): 48-58. | |
| 15 | Tants JN, Oberstrass L, Weigand JE, et al. Structure and RNA-binding of the helically extended Roquin CCCH-type zinc finger [J]. Nucleic Acids Res, 2024, 52(16): 9838-9853. |
| 16 | Wang B, Fang RQ, Chen FM, et al. A novel CCCH-type zinc finger protein SAW1 activates OsGA20ox3 to regulate gibberellin homeostasis and anther development in rice [J]. J Integr Plant Biol, 2020, 62(10): 1594-1606. |
| 17 | Xie ZN, Yu GH, Lei SS, et al. CCCH protein-PvCCCH69 acted as a repressor for leaf senescence through suppressing ABA-signaling pathway [J]. Hortic Res, 2021, 8(1): 165. |
| 18 | Deng ZY, Yang ZJ, Liu XY, et al. Genome-wide identification and expression analysis of C3H zinc finger family in potato (Solanum tuberosum L.) [J]. Int J Mol Sci, 2023, 24(16): 12888. |
| 19 | Xu LA, Xiong XP, Liu TT, et al. Heterologous expression of two Brassica campestris CCCH zinc-finger proteins in Arabidopsis induces cytoplasmic foci and causes pollen abortion [J]. Int J Mol Sci, 2023, 24(23): 16862. |
| 20 | Bao PG, Sun JS, Qu GZ, et al. Identification and expression analysis of CCCH gene family and screening of key low temperature stress response gene CbuC3H24 and CbuC3H58 in Catalpa bungei [J]. BMC Genomics, 2024, 25(1): 779. |
| 21 | Teale WD, Pasternak T, Dal Bosco C, et al. Flavonol-mediated stabilization of PIN efflux complexes regulates polar auxin transport [J]. EMBO J, 2021, 40(1): e104416. |
| 22 | 郭欣慰, 黄丛林, 吴忠义, 等. 植物类黄酮生物合成的分子调控 [J]. 北方园艺, 2011(4): 204-207. |
| Guo XW, Huang CL, Wu ZY, et al. Molecular regulation of plant flavonoid biosynthesis pathway [J]. North Hortic, 2011(4): 204-207. | |
| 23 | 肖诗琪. 蜡梅CCCH型锌指蛋白基因CpC3H3在成花诱导中的功能研究 [D]. 重庆: 西南大学, 2022. |
| Xiao SQ. Study on the function of CCCH zinc finger protein gene CpC3H3 in flowering induction of Chimonanthus praecox [D]. Chongqing: Southwest University, 2022. | |
| 24 | Dong XM, Han BC, Chen JW, et al. Multiomics analyses reveal MsC3H29 positively regulates flavonoid biosynthesis to improve drought resistance of autotetraploid cultivated alfalfa (Medicago sativa L.) [J]. J Agric Food Chem, 2024, 72(25): 14448-14465. |
| 25 | Zhang M, Zhao YY, Nan TG, et al. Genome-wide analysis of Citrus medica ABC transporters reveals the regulation of fruit development by CmABCB19 and CmABCC10 [J]. Plant Physiol Biochem, 2024, 215: 109027. |
| 26 | Zeng SH, Wang ZQ, Shi DD, et al. The high-quality genome of Grona styracifolia uncovers the genomic mechanism of high levels of schaftoside, a promising drug candidate for treatment of COVID-19 [J]. Hortic Res, 2024, 11(5): uhae089. |
| 27 | 胡雨晴, 施敏, 闵远洋, 等. 6-BA和干旱胁迫下广金钱草内参基因的筛选及验证 [J]. 分子植物育种, 2023, 21(7): 2236-2244. |
| Hu YQ, Shi M, Min YY, et al. Selection and validation of internal reference genes of Desmodium styracifolium (osb.) Merr under 6-BA and drought stress [J]. Mol Plant Breed, 2023, 21(7): 2236-2244. | |
| 28 | 闫宗运. 拟南芥中含有CCCH锌指域和KH域的蛋白调控成花与衰老的机理 [D]. 北京: 中国农业大学, 2018. |
| Yan ZY. Mechanism of flowering and senescence regulation by proteins containing CCCH zinc finger and KH domains in Arabidopsis thaliana [D]. Beijing: China Agricultural University, 2018. | |
| 29 | 邓玉萍, 王倩, 张敏慧, 等. 向日葵ARF基因家族鉴定及其在花发育中的功能分析 [J]. 植物遗传资源学报, 2024, 25(11): 1967-1979. |
| Deng YP, Wang Q, Zhang MH, et al. Identification of the sunflower ARF gene family and prediction analysis of its function in flower development [J]. J Plant Genet Resour, 2024, 25(11): 1967-1979. | |
| 30 | Li DD, Yang JL, Pak S, et al. PuC3H35 confers drought tolerance by enhancing lignin and proanthocyanidin biosynthesis in the roots of Populus ussuriensis [J]. New Phytol, 2022, 233(1): 390-408. |
| 31 | Zhang SY, Liu JJ, Zhong GX, et al. Genome-wide identification and expression patterns of the C2H2-zinc finger gene family related to stress responses and catechins accumulation in Camellia sinensis[L.]O. kuntze [J]. Int J Mol Sci, 2021, 22(8): 4197. |
| [1] | 刘涛, 王志淇, 吴文博, 石文婷, 王超楠, 杜崇, 杨中敏. 马铃薯GRAM基因家族鉴定与表达分析[J]. 生物技术通报, 2025, 41(4): 145-155. |
| [2] | 孙天国, 衣兰, 秦旭洋, 乔梦雪, 谷新颖, 韩艺, 沙伟, 张梅娟, 马天意. 大白菜DABB基因家族的全基因组鉴定及盐碱胁迫下的表达分析[J]. 生物技术通报, 2025, 41(4): 156-165. |
| [3] | 王田田, 常雪瑞, 黄婉洋, 黄嘉欣, 苗如意, 梁燕平, 王静. 辣椒GASA基因家族的鉴定及分析[J]. 生物技术通报, 2025, 41(4): 166-175. |
| [4] | 王琛, 刘国梅, 陈畅, 张晋龙, 姚琳, 孙璇, 杜春芳. 白菜型油菜CCDs家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(3): 161-170. |
| [5] | 彭婷, 林颖, 谭圆圆, 饶英, 黄覃, 张文娥, 汪波, 田瑞丰, 刘国锋. 多星韭AwANSs基因的克隆与表达分析[J]. 生物技术通报, 2025, 41(3): 230-239. |
| [6] | 马天意, 许家佳, 路文婧, 吴艳, 沙伟, 张梅娟, 彭疑芳. ‘金小童’大白菜BrcGASA3基因在盐碱胁迫下的表达分析及抗性鉴定[J]. 生物技术通报, 2025, 41(2): 127-138. |
| [7] | 刘芳, 杜芊芊, 何昊, 肖钢, 晏仲元, 郝小花. miR172b/c-BnMSH7.A1模块响应甘蓝型油菜中Cu2+胁迫机制[J]. 生物技术通报, 2025, 41(2): 139-149. |
| [8] | 许圆梦, 毛娇, 王梦瑶, 王数, 任江陵, 刘宇涵, 刘思辰, 乔治军, 王瑞云, 曹晓宁. 糜子PmDEP1和PmEP3基因的克隆与表达特征分析[J]. 生物技术通报, 2025, 41(2): 150-162. |
| [9] | 贾子健, 王宝强, 陈立飞, 王义真, 魏小红, 赵颖. 响应NO的藜麦CHX基因家族在盐碱胁迫下的表达模式[J]. 生物技术通报, 2025, 41(2): 163-174. |
| [10] | 钱政毅, 吴绍芳, 曹舒怡, 宋雅欣, 潘鑫峰, 李兆伟, 范凯. 睡莲NAC转录因子的鉴定及其表达分析[J]. 生物技术通报, 2025, 41(2): 234-247. |
| [11] | 向春繁, 李勒松, 王娟, 梁艳丽, 杨生超, 栗孟飞, 赵艳. 当归肉桂醇脱氢酶AsCAD功能鉴定及表达分析[J]. 生物技术通报, 2025, 41(2): 295-308. |
| [12] | 葛仕杰, 刘怡德, 张华东, 宁强, 朱展望, 王书平, 刘易科. 小麦蛋白质二硫键异构酶基因家族的鉴定与表达[J]. 生物技术通报, 2025, 41(2): 85-96. |
| [13] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
| [14] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
| [15] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||