生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 186-196.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0084
• 研究报告 • 上一篇
赖诗雨(
), 梁巧兰(
), 魏列新, 牛二波, 陈应娥, 周鑫, 杨思正, 王博
收稿日期:2025-01-20
出版日期:2025-08-26
发布日期:2025-08-14
通讯作者:
梁巧兰,女,教授,博士生导师,研究方向 :农药学和植物病害防治;E-mail: liangql@gsau.edu.cn作者简介:赖诗雨,女,硕士研究生,研究方向 :作物病害生物防治;E-mail: 845160117@qq.com
基金资助:
LAI Shi-yu(
), LIANG Qiao-lan(
), WEI Lie-xin, NIU Er-bo, CHEN Ying-e, ZHOU Xin, YANG Si-zheng, WANG Bo
Received:2025-01-20
Published:2025-08-26
Online:2025-08-14
摘要:
目的 探究本氏烟(Nicotiana benthamiana)中编码茉莉酸ZIM结构域蛋白3(jasmonate ZIM-domain protein 3, JAZ3)基因NbJAZ3对苜蓿花叶病毒(alfalfa mosaic virus, AMV)侵染本氏烟的影响,为进一步解析AMV侵染机制提供理论依据。 方法 以本氏烟和AMV为材料,采用摩擦接种法将AMV接种于本氏烟,取接种后1、7、15、21 d的本氏烟叶片进行转录组测序分析,对茉莉酸(jasmonic acid, JA)信号转导途径中差异基因进行筛选,利用实时荧光定量PCR(RT-qPCR)检测NbJAZ3在AMV侵染中的表达变化;克隆NbJAZ3,进行生物学信息分析,构建系统进化树并进行多序列比对;构建pCAMBIA1300-NbJAZ3瞬时过表达载体,利用激光共聚焦显微镜观察NbJAZ3蛋白亚细胞定位,利用Western blot检测蛋白表达量;当NbJAZ3在本氏烟叶片中瞬时过表达后,接种AMV,采用RT-qPCR法检测接种后第5天的AMV CP相对表达量;利用烟草脆裂病毒(tobacco rattle virus, TRV)诱导的基因沉默(virus-induced gene silencing, VIGS)技术构建pTRV2-NbJAZ3沉默载体,沉默NbJAZ3后摩擦接种AMV,利用RT-qPCR检测AMV CP相对表达量。 结果 转录组测序和RT-qPCR进一步验证表明,AMV接种后的不同天数NbJAZ3均下调表达,且第15天NbJAZ3相对表达量最低,与对照相比下降了84.43%;NbJAZ3 CDS序列长度为1 143 bp,编码380个氨基酸,包含ZIM和Jas-motif 2个保守结构域;NbJAZ3与林烟草(Nicotiana sylvestris)的NsJAZ3同源性最高,相似度为96.58%;显微镜观察到NbJAZ3蛋白定位于本氏烟叶片的细胞核、细胞质与细胞膜中;与对照组相比,NbJAZ3瞬时过表达和瞬时沉默的本氏烟接种AMV第5天时,AMV CP相对表达量分别降低了83.82%和增加了78.58%。 结论 AMV侵染会引起本氏烟中NbJAZ3下调,瞬时过表达NbJAZ3可抑制AMV对本氏烟的侵染,而沉默该基因可促进AMV的侵染,进一步表明NbJAZ3可作为本氏烟抗AMV侵染的正调控因子,在抵御病毒侵染中具有重要作用。
赖诗雨, 梁巧兰, 魏列新, 牛二波, 陈应娥, 周鑫, 杨思正, 王博. NbJAZ3在苜蓿花叶病毒侵染本氏烟过程中的作用[J]. 生物技术通报, 2025, 41(8): 186-196.
LAI Shi-yu, LIANG Qiao-lan, WEI Lie-xin, NIU Er-bo, CHEN Ying-e, ZHOU Xin, YANG Si-zheng, WANG Bo. The Role of NbJAZ3 in the Infection of Nicotiana benthamiana by Alfalfa Mosaic Virus[J]. Biotechnology Bulletin, 2025, 41(8): 186-196.
| 引物名称 | 上游引物序列 | 下游引物序列 |
|---|---|---|
| Primer name | Forward primer sequence (5′-3′) | Reverse primer sequence (5′-3′) |
| NbJAZ3 | ATGGAGAGAGATTTTATGGG | CGTCTCCTTGACCAAATT |
| Kpn Ⅰ/Sac I-NbJAZ3 | GGTACCATGGAGAGAGATTTTATGGG | GAGCTCCGTCTCCTTGACCAAATT |
| si-NbJAZ3 | GGTACCCTATCTCCAGTTCAGGC | GAGCTCCCGAGCCAATGAT |
| T-vector-M13 | CGCCAGGGTTTTCCCAGTCAC | AGCGGATAACAATTTCACACAGGA |
| pCAMBIA1300 | CTATCCTTCGCAAGACCCTTC | TGACGAACGTTGTCGAAACC |
| pTRV2-PCR | ACATTGTTACTCAAGGAAGCACGA | AACTTCAGACACGGATCTACTT |
| 25S | AAGGCCGAAGAGGAGAAAGGT | CGTCCCTTAGGATCGGCTTAC |
| AMV-CP | GCATCCCTAGGGGCATTCATGCA | ATCATTGATCGGTAATGGGCCGTT |
| qPCR-NbJAZ3 | CTGGTGTCGGGCAGAAAA | TGGGTTGGAAACTGGGAG |
| Actin | CTTGAAACAGCAAAGACCAGC | CATCCTATCAGCAATGCCCG |
表1 本试验采用引物及序列
Table 1 Primers and sequences were used in this experiment
| 引物名称 | 上游引物序列 | 下游引物序列 |
|---|---|---|
| Primer name | Forward primer sequence (5′-3′) | Reverse primer sequence (5′-3′) |
| NbJAZ3 | ATGGAGAGAGATTTTATGGG | CGTCTCCTTGACCAAATT |
| Kpn Ⅰ/Sac I-NbJAZ3 | GGTACCATGGAGAGAGATTTTATGGG | GAGCTCCGTCTCCTTGACCAAATT |
| si-NbJAZ3 | GGTACCCTATCTCCAGTTCAGGC | GAGCTCCCGAGCCAATGAT |
| T-vector-M13 | CGCCAGGGTTTTCCCAGTCAC | AGCGGATAACAATTTCACACAGGA |
| pCAMBIA1300 | CTATCCTTCGCAAGACCCTTC | TGACGAACGTTGTCGAAACC |
| pTRV2-PCR | ACATTGTTACTCAAGGAAGCACGA | AACTTCAGACACGGATCTACTT |
| 25S | AAGGCCGAAGAGGAGAAAGGT | CGTCCCTTAGGATCGGCTTAC |
| AMV-CP | GCATCCCTAGGGGCATTCATGCA | ATCATTGATCGGTAATGGGCCGTT |
| qPCR-NbJAZ3 | CTGGTGTCGGGCAGAAAA | TGGGTTGGAAACTGGGAG |
| Actin | CTTGAAACAGCAAAGACCAGC | CATCCTATCAGCAATGCCCG |
图1 AMV侵染本氏烟不同时间差异基因热图(A-C)及AMV CP(D)和NbJAZ3(E)基因相对表达量A:接种AMV后1 d;B:接种AMV后15 d;C:接种AMV后21 d;D:AMV CP基因相对表达量;E:NbJAZ3基因相对表达量。统计分析采用Student’s t检验(**:0.001<P<0.01,***:P<0.001),每个处理进行3次生物学重复,每次生物学重复3株植株,数值代表3次生物学重复的平均值±标准误,下同
Fig. 1 Heat map of differential genes (A-C) and the relative expressions of AMV CP (D) and NbJAZ3 (E) of AMV-infected N. benthamiana at different timesA: 1 d after AMV infection. B:15 d after AMV infection. C:21d after AMV infection. D: Relative expressions of AMV CP. E: Relative expressions of NbJAZ3. Student's t test was used for statistical analysis (**: 0.001<P<0.01, ***: P<0.001). Each treatment was repeated three times, and three plants were used for repeated each time. The value indicates the mean ± standard error of the three biological replicates, the same below
图3 NbJAZ3蛋白理化性质分析A:蛋白亲疏水性结构预测;B:蛋白二级结构预测;C:蛋白三级结构预测
Fig. 3 Analysis for physicochemical properties ofNbJAZ3 proteinA: Prediction of protein hydrophilic structure. B: Prediction of protein secondary structure. C: Prediction of protein tertiary structure
图4 T-Vetor-NbJAZ3(A)和pCAMBIA1300-NbJAZ3(B)瞬时过表达载体双酶切验证M1:DNA marker(2 000 bp);M2:DNA marker(15 000 bp);T-vector载体、pCAMBIA1300载体及NbJAZ3长度分别为2 693、11 189和1 143 bp
Fig. 4 Double enzyme digestion of T-Vetor-NbJAZ3 (A) and pCAMBIA1300-NbJAZ3 (B) transient overexpressionM1: DNA marker (2 000 bp). M2: DNA marker (15 000 bp). The lengths of T-vector, pCAMBIA1300 and NbJAZ3 are 2 693, 11 189 and 1 143 bp, respectively
图5 NbJAZ3在本氏烟叶片中的亚细胞定位A:pCAMBIA1300-NbJAZ3在本氏烟中的表达;B:pCAMBIA1300-35S-eGFP在本氏烟中的表达
Fig. 5 Subcellular localization of NbJAZ3 in N. benthamiana leavesA: Expression of pCAMBIA1300-NbJAZ3 in N. benthamiana. B: Expression of pCAMBIA1300-35S-eGFP in N. benthamiana
图6 本氏烟中瞬时过表达NbJAZ3的表达量检测及对AMV复制的影响A:pCAMBIA1300-NbJAZ3瞬时过表达后第5天NbJAZ3相对表达量;B:Western blot检测pCAMBIA1300-NbJAZ3的表达;C:瞬时过表达NbJAZ3并接种AMV后第5天的本氏烟表型;D:NbJAZ3瞬时过表达对AMV CP相对表达量的影响
Fig. 6 Detection of transient overexpression of NbJAZ3 in N. benthamiana and its effect on AMV replicationA: The relative expression of NbJAZ3 on the day 5 after transient overexpression of pCAMBIA1300-NbJAZ3.B: The expression of pCAMBIA1300-NbJAZ3 was detected by Western blot. C: The phenotype of N. benthamiana on the day 5 after transient overexpression of NbJAZ3 and inoculation with AMV. D: Effect of transient overexpression of NbJAZ3 on the relative expression of AMV CP
图7 NbJAZ3沉默效率检测及对AMV复制的影响A: NbJAZ3第9天沉默效率;B:NbJAZ3沉默植株接种AMV后第5天叶片表型;C:NbJAZ3沉默植株接种AMV后第5天RT-qPCR检测AMV CP相对表达量
Fig. 7 Detection of silencing efficiency of NbJAZ3 and its effect on AMV replicationA: Silencing efficiency of NbJAZ3 on the day 9. B: The leaf phenotype of NbJAZ3 silenced plants on the day 5 after inoculation with AMV; C: The relative expression of AMV CP in NbJAZ3 silenced plants was detected by RT-qPCR on the day 5 after inoculation with AMV
| [1] | 李梅蓉, 孙媛, 卢建霖, 等. 苜蓿花叶病毒的研究进展 [J]. 贵州农业科学, 2019, 47(4): 69-73. |
| Li MR, Sun Y, Lu JL, et al. Research progress on alfalfa mosaic virus [J]. Guizhou Agric Sci, 2019, 47(4): 69-73. | |
| [2] | 梁巧兰, 魏列新, 徐秉良. 白三叶草病毒病病株空间分布型及抽样技术研究 [J]. 中国草地学报, 2013, 35(2): 48-51. |
| Liang QL, Wei LX, Xu BL. Studies on the spatial distribution pattern and sampling methodology of virus diseased plant of white clover [J]. Chin J Grassland, 2013, 35(2): 48-51. | |
| [3] | 周建玲, 梁巧兰, 魏列新, 等. 不同症状类型苜蓿病毒病AMV病原检测及其寄主范围测定 [J]. 草业学报, 2024, 33(1): 126-137. |
| Zhou JL, Liang QL, Wei LX, et al. Detection of AMV pathogen of alfalfa virus diseases with different symptom types and its host ranges [J]. Acta Prataculturae Sin, 2024, 33(1): 126-137. | |
| [4] | Liang QL, Wei LX, Xu BL, et al. Study of viruses co-infecting white clover (Trifolium repens) in China [J]. J Integr Agric, 2017, 16(9): 1990-1998. |
| [5] | Zhao XQ, He YQ, Liu YX, et al. JAZ proteins: Key regulators of plant growth and stress response [J]. Crop J, 2024, 12(6): 1505-1516. |
| [6] | Lv GB, Han R, Shi JJ, et al. Genome-wide identification of the TIFY family reveals JAZ subfamily function in response to hormone treatment in Betula platyphylla [J]. BMC Plant Biol, 2023, 23(1): 143. |
| [7] | Monte I, Caballero J, Zamarreño AM, et al. JAZ is essential for ligand specificity of the COI1/JAZ co-receptor [J]. Proc Natl Acad Sci USA, 2022, 119(49): e2212155119. |
| [8] | Garrido-Bigotes A, Valenzuela-Riffo F, Figueroa CR. Evolutionary analysis of JAZ proteins in plants: an approach in search of the ancestral sequence [J]. Int J Mol Sci, 2019, 20(20): 5060. |
| [9] | 杨锐佳, 张中保, 吴忠义. 植物转录因子TIFY家族蛋白结构和功能的研究进展 [J]. 生物技术通报, 2020, 36(12): 121-128. |
| Yang RJ, Zhang ZB, Wu ZY. Progress of the structural and functional analysis of plant transcription factor TIFY protein family [J]. Biotechnol Bull, 2020, 36(12): 121-128. | |
| [10] | 张乐欢, 邹昌玉, 朱天翔, 等. 茉莉酸在植物抗逆性中的研究进展 [J]. 生物工程学报, 2024, 40(1): 15-34. |
| Zhang LH, Zou CY, Zhu TX, et al. The role of jasmonic acid in stress resistance of plants: a review [J]. Chin J Biotechnol, 2024, 40(1): 15-34. | |
| [11] | 吴德伟, 汪姣姣, 谢道昕. 茉莉素与植物生物胁迫反应 [J]. 生物技术通报, 2018, 34(7): 14-23. |
| Wu DW, Wang JJ, Xie DX. Jasmonate action and biotic stress response in plants [J]. Biotechnol Bull, 2018, 34(7): 14-23. | |
| [12] | Koo AJ. Metabolism of the plant hormone jasmonate: a sentinel for tissue damage and master regulator of stress response [J]. Phytochem Rev, 2018, 17(1): 51-80. |
| [13] | Staswick PE. JAZing up jasmonate signaling [J]. Trends Plant Sci, 2008, 13(2): 66-71. |
| [14] | Johnson LYD, Major IT, Chen YN, et al. Diversification of JAZ-MYC signaling function in immune metabolism [J]. New Phytol, 2023, 239(6): 2277-2291. |
| [15] | Lozano-Durán R, Rosas-Díaz T, Gusmaroli G, et al. Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana [J]. Plant Cell, 2011, 23(3): 1014-1032. |
| [16] | Zhang C, Ding ZM, Wu KC, et al. Suppression of jasmonic acid-mediated defense by viral-inducible microRNA319 facilitates virus infection in rice [J]. Mol Plant, 2016, 9(9): 1302-1314. |
| [17] | Rosas-Diaz T, Cana-Quijada P, Wu MS, et al. The transcriptional regulator JAZ8 interacts with the C2 protein from geminiviruses and limits the geminiviral infection in Arabidopsis [J]. J Integr Plant Biol, 2023, 65(7): 1826-1840. |
| [18] | Wu DW, Qi TC, Li WX, et al. Viral effector protein manipulates host hormone signaling to attract insect vectors [J]. Cell Res, 2017, 27(3): 402-415. |
| [19] | Li LL, Zhang HH, Chen CH, et al. A class of independently evolved transcriptional repressors in plant RNA viruses facilitates viral infection and vector feeding [J]. Proc Natl Acad Sci USA, 2021, 118(11): e2016673118. |
| [20] | 田龙, 梁巧兰, 魏列新, 等. AMV和WCMV复合侵染对本氏烟4种内源激素的影响 [J]. 中国草地学报, 2023, 45(11): 99-108. |
| Tian L, Liang QL, Wei LX, et al. Effects of alfalfa mosaic virus(AMV) and white clover mosaic virus (WCMV) co-infection on four endogenous hormones in Nicotiana benthamiana [J]. Chin J Grassland, 2023, 45(11): 99-108. | |
| [21] | Letunic I, Khedkar S, Bork P. SMART: recent updates, new developments and status in 2020 [J]. Nucleic Acids Res, 2021, 49(D1): D458-D460. |
| [22] | Tamura K, Stecher G, Kumar S. MEGA11: molecular evolutionary genetics analysis version 11 [J]. Mol Biol Evol, 2021, 38(7): 3022-3027. |
| [23] | He F, Zhang LX, Zhao GQ, et al. Genome-wide identification and expression analysis of the NAC gene family in alfalfa revealed its potential roles in response to multiple abiotic stresses [J]. Int J Mol Sci, 2022, 23(17): 10015. |
| [24] | Peng HR, Pu YD, Yang X, et al. Overexpression of a pathogenesis-related gene NbHIN1 confers resistance to Tobacco Mosaic Virus in Nicotiana benthamiana by potentially activating the jasmonic acid signaling pathway [J]. Plant Sci, 2019, 283: 147-156. |
| [25] | Almagro Armenteros JJ, Tsirigos KD, Sønderby CK, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks [J]. Nat Biotechnol, 2019, 37(4): 420-423. |
| [26] | 温玉霞, 张坚, 王琴, 等. 本氏烟NbMBF1c的克隆、表达及在TMV侵染过程中的功能 [J]. 中国农业科学, 2022, 55(18): 3543-3555. |
| Wen YX, Zhang J, Wang Q, et al. Cloning, expression and anti-TMV function analysis of Nicotiana benthamiana NbMBF1c [J]. Sci Agric Sin, 2022, 55(18): 3543-3555. | |
| [27] | 曲潇玲, 焦裕冰, 罗健达, 等. 本氏烟NbNAC062的克隆及对马铃薯Y病毒侵染的抑制作用 [J]. 中国农业科学, 2021, 54(19): 4110-4120. |
| Qu XL, Jiao YB, Luo JD, et al. Cloning of Nicotiana benthamiana NAC062 and its inhibitory effect on potato virus Y infection [J]. Sci Agric Sin, 2021, 54(19): 4110-4120. | |
| [28] | Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method [J]. Methods, 2001, 25(4): 402-408. |
| [29] | 魏昕, 刘雨恒, 刘宇阳, 等. 植物JAZ蛋白家族研究进展 [J]. 植物生理学报, 2021, 57(5): 1039-1046. |
| Wei X, Liu YH, Liu YY, et al. Advances of JAZ family in plants [J]. Plant Physiol J, 2021, 57(5): 1039-1046. | |
| [30] | 孙雨桐, 刘德帅, 齐迅, 等. 茉莉酸调控植物生长发育和胁迫的研究进展 [J]. 生物技术通报, 2023, 39(11): 99-109. |
| Sun YT, Liu DS, Qi X, et al. Advances in jasmonic acid regulating plant growth and development as well as stress [J]. Biotechnol Bull, 2023, 39(11): 99-109. | |
| [31] | Monte I, Franco-Zorrilla JM, García-Casado G, et al. A single JAZ repressor controls the jasmonate pathway in Marchantia polymorpha [J]. Mol Plant, 2019, 12(2): 185-198. |
| [32] | Jing YX, Liu J, Liu P, et al. Overexpression of TaJAZ1 increases powdery mildew resistance through promoting reactive oxygen species accumulation in bread wheat [J]. Sci Rep, 2019, 9(1): 5691. |
| [33] | Zhang GF, Yan XX, Zhang SL, et al. The jasmonate-ZIM domain gene VqJAZ4 from the Chinese wild grape Vitis quinquangularis improves resistance to powdery mildew in Arabidopsis thaliana [J]. Plant Physiol Biochem, 2019, 143: 329-339. |
| [34] | Yang ZR, Huang Y, Yang JL, et al. Jasmonate signaling enhances RNA silencing and antiviral defense in rice [J]. Cell Host Microbe, 2020, 28(1): 89-103.e8. |
| [35] | 潘婷, 胡利伟, 王中, 等. 烟草JAZ1基因的克隆和功能分析 [J]. 烟草科技, 2018, 51(12): 15-22. |
| Pan T, Hu LW, Wang Z, et al. Cloning and function analysis of JAZ1 gene from Nicotiana tabacum [J]. Tob Sci Technol, 2018, 51(12): 15-22. | |
| [36] | 刘学东, 刘思佳, 陈曦, 等. 玉米茉莉酸信号途径参与抵抗玉米褪绿斑驳病毒的侵染 [J]. 植物保护学报, 2022, 49(5): 1342-1348. |
| Liu XD, Liu SJ, Chen X, et al. Jasmonic acid signaling confers resistance to maize chlorotic mottle virus in maize [J]. J Plant Prot, 2022, 49(5): 1342-1348. | |
| [37] | He X, Zhu LF, Wassan GM, et al. GhJAZ2 attenuates cotton resistance to biotic stresses via the inhibition of the transcriptional activity of GhbHLH171 [J]. Mol Plant Pathol, 2018, 19(4): 896-908. |
| [38] | Thatcher LF, Cevik V, Grant M, et al. Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum [J]. J Exp Bot, 2016, 67(8): 2367-2386. |
| [1] | 李新妮, 李俊怡, 马雪华, 何卫, 李佳丽, 于佳, 曹晓宁, 乔治军, 刘思辰. 谷子果胶甲酯酶抑制子PMEI基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2025, 41(7): 150-163. |
| [2] | 李成花, 豆飞飞, 任毓昭, 刘彩霞, 刘凤楼, 王掌军, 李清峰. 外施水杨酸对白粉菌侵染小麦的影响及白粉菌转录组分析[J]. 生物技术通报, 2025, 41(7): 272-280. |
| [3] | 许慧珍, SHANTWANA Ghimire, RAJU Kharel, 岳云, 司怀军, 唐勋. 马铃薯SUMO E3连接酶基因家族分析及StSIZ1基因的克隆与表达模式分析[J]. 生物技术通报, 2025, 41(6): 119-129. |
| [4] | 张勇, 宋盛龙, 李永泰, 张新宇, 李艳军. 陆地棉GhSWEET9基因的克隆及抗黄萎病功能分析[J]. 生物技术通报, 2025, 41(6): 144-154. |
| [5] | 程珊, 王会伟, 陈晨, 朱雅婧, 李春鑫, 别海, 王树峰, 陈献功, 张向歌. 油莎豆MYB转录因子基因CeMYB154克隆及耐盐功能分析[J]. 生物技术通报, 2025, 41(6): 218-228. |
| [6] | 李志强, 罗正乾, 徐琳黎, 周国慧, 屈丝雨, 刘恩良, 顼东婷. 基于T2T基因组鉴定大豆R2R3-MYB基因家族及干旱和盐胁迫下的表达分析[J]. 生物技术通报, 2025, 41(5): 141-152. |
| [7] | 杨春, 王晓倩, 王红军, 晁跃辉. 蒺藜苜蓿MtZHD4基因克隆、亚细胞定位及表达分析[J]. 生物技术通报, 2025, 41(5): 244-254. |
| [8] | 王田田, 常雪瑞, 黄婉洋, 黄嘉欣, 苗如意, 梁燕平, 王静. 辣椒GASA基因家族的鉴定及分析[J]. 生物技术通报, 2025, 41(4): 166-175. |
| [9] | 班秋艳, 赵鑫月, 迟文静, 黎俊生, 王琼, 夏瑶, 梁丽云, 贺巍, 李叶云, 赵广山. 茶树光敏色素互作因子CsPIF3a的克隆及其与光温逆境的响应[J]. 生物技术通报, 2025, 41(4): 256-265. |
| [10] | 卢勇杰, 夏海乾, 李永铃, 张文建, 余婧, 赵会纳, 王兵, 许本波, 雷波. 烟草AP2/ERF转录因子NtESR2的克隆及功能分析[J]. 生物技术通报, 2025, 41(4): 266-277. |
| [11] | 覃悦, 杨妍, 张磊, 卢丽丽, 李先平, 蒋伟. 二倍体和四倍体马铃薯StGAox基因鉴定与比较分析[J]. 生物技术通报, 2025, 41(3): 146-160. |
| [12] | 王琛, 刘国梅, 陈畅, 张晋龙, 姚琳, 孙璇, 杜春芳. 白菜型油菜CCDs家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(3): 161-170. |
| [13] | 黄颖, 遇文婧, 刘雪峰, 刁桂萍. 山新杨谷胱甘肽转移酶基因的生物信息学与表达模式分析[J]. 生物技术通报, 2025, 41(2): 248-256. |
| [14] | 李明, 刘祥宇, 王益娜, 和四梅, 沙本才. 紫金龙异紫堇定生物合成相关6-OMT基因克隆与功能表征[J]. 生物技术通报, 2025, 41(2): 309-320. |
| [15] | 丁若羲, 豆硕, 安叶芝, 孔文慧, 郭文静, 张冬梅, 王省芬, 马峙英, 吴立柱. VIGS技术在棉花全生长周期中的应用拓展研究[J]. 生物技术通报, 2025, 41(2): 58-64. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||