[1] 谢科, 饶力群. 基因组编辑技术在植物中的研究进展与应用前景[J]. 中国生物工程杂志, 2013, 33(6):99-104. [2] Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7):397-405. [3] Godde JS, Bickerton A. The repetitive DNA elements called CRISPRs and their associated genes:evidence of horizontal transfer among prokaryotes[J]. Mol Evol, 2006, 62:718-729. [4] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats[J]. BMC Bioinformatics, 2007, 8:172. [5] Mojica FJ, Diez-Villasenor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria[J]. Mol Microbiol, 2000, 36:244-246. [6] Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats[J]. Genome Biol, 2007, 8:R61. [7] 常振义, 严维, 刘东风, 等. CRISPR/Cas技术研究进展[J]. 农业生物技术学报, 2015, 23(9):1196-1206. [8] 张瑞. 对CRISPR-Cas系统的简单介绍[J]. 农业与技术, 2015, 35(2):16-17. [9] Richter H, Randau L, Plagen A. Exploiting CRISPR/Cas:Interference mechanisms and applications[J]. Int J Mol Sci, 2013, 14:14518-14531. [10] 方锐, 畅飞, 孙照霖, 等. CRISPR/Cas9介导的基因组定点编辑技术[J]. 生物化学与生物物理进展, 2013, 40(8):691-702. [11] 刘志国. CRISPR/Cas9系统介导基因组编辑的研究进展[J]. 畜牧兽医学报, 2014, 45(10):1567-1583. [12] 郑小梅, 张晓立, 于建东, 等. CRISPR-Cas9介导的基因组编辑技术的研究进展[J]. 生物技术进展, 2015, 5(1):1-9. [13] Fu Y, Foden JA, Khayter C, et al. High-frequency off-target mutagenesis induced by CRISPR- Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31(9):822-826. [14] Wieden heft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385):331-338. [15] 翟礼嘉, 郭东姝, 张金喆, 等. CRISPR/Cas系统在植物基因组编辑中的应用[J]. 生命科学, 2015, 27(1):64-70. [16] Samai P, Pyenson N, Jiang WY, et al. Co-transcriptional DNA and RNA Cleavage during TypeIII CRISPR-Cas Immunity[J]. Cell, 2015, 161:1164-1174. [17] Zalatan JG, Lee ME, Almeida R, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160:339-350. [18] Ann Ran F, Cong L, Zhang F, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546):186-191. [19] Nihongak Y, Kawano F, Nakajima T, et al. Photoactivatable CRISPR-Cas9 for optogenetic genome editing[J]. Nature Biotechnology, 2015:1-7. [20] Heckl D, Kowalczyk MS, Yudovich D, et al. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing[J]. Nat Biotechnol, 2014, 32(9):941-946. [21] Chen SD, Sanjana NE, Zheng KJ, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis[J]. Cell, 2015, 160:1246-1260. [22] Ebina H, Misawa N, Kanemura Y, et al. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus[J]. Sci Rep, 2013, 3(2510): 1-7. [23] 韩英伦, 李庆伟. CRISPR/Cas9基因组编辑技术在HIV-1感染治疗中的应用进展[J]. 遗传, 2016, 38(1):9-16. [24] Wang J, Quake S R. RNA-guided endonuclease provides a therapeutic strategy to cure latent herpesviridae infection[J]. Proc Natl Acad Sci USA, 2014, 111(36):13157-13162. [25] Ma XL, Zhang QY, Zhu QL, et al. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Mol Plant, 2015:8(8):1274-1284. [26] Liu Y, Ma S, Wang X, et al. Highiy efficient muitiplex targeted mutagenesis and genomic stucture variation in Bombyx mori cells using CRISPR/Cas9[J]. Insect Biochem Mol Biol, 2014, 49:35-42. [27] 辛虎虎. CRISPR/Cas9基因敲除技术在家蚕基因功能研究中的应用[D]. 杭州:浙江大学, 2015. [28] Kistler KE, Vosshall LB, Matthews BJ. Genomeengineering with CRISPR-Cas9 in the mosquito Aedes aegypti[J]. Cell Rep, 2015, 11(1):51-60. |