生物技术通报 ›› 2025, Vol. 41 ›› Issue (3): 35-43.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0667
李欣芃1(), 张武汉2, 张莉3, 舒服2, 何强2, 郭杨1, 邓华凤2, 王悦1(
), 孙平勇2(
)
收稿日期:
2024-07-12
出版日期:
2025-03-26
发布日期:
2025-03-20
通讯作者:
孙平勇,男,副研究员,研究方向 :水稻功能基因挖掘和分子育种;E-mail: zlspy23@126.com作者简介:
李欣芃,男,硕士研究生,研究方向 :水稻基因定位;E-mail: 2634747985@qq.com
基金资助:
LI Xin-peng1(), ZHANG Wu-han2, ZHANG Li3, SHU Fu2, HE Qiang2, GUO Yang1, DENG Hua-feng2, WANG Yue1(
), SUN Ping-yong2(
)
Received:
2024-07-12
Published:
2025-03-26
Online:
2025-03-20
摘要:
目的 γ射线诱变具有效率高、方法简单等特点而广泛应用于水稻育种工作。OsGRF4是一个重要且稀有的水稻多效基因,能显著提高氮利用效率、产量和耐冷性,同时降低籽粒落粒性,旨在获得不同类型的突变体资源和挖掘OsGRF4的调控基因。 方法 利用γ射线对NIL-GRF4材料进行辐射诱变,通过功能标记和SSR标记对突变体的真实性和遗传背景进行鉴定。 结果 经过性状调查,获得15份粒型突变体、6份斑马叶突变体、4份分蘖突变体和3份不育突变体。其中一份重要的粒型突变体,其粒长达14.10 mm,粒长和千粒重比野生型分别增加1.50 mm和8.85 g,增幅分别为11.90%和23.95%。利用OsGRF4的功能标记和48对SSR标记鉴定了突变体的真实性和遗传背景,结果表明突变体材料均来源于野生型NIL-GRF4,并且突变体的遗传背景与野生型极为相似。 结论 已将粒型、斑马叶和不育突变体与野生型杂交构建了基因定位的F2群体,为水稻育种提供重要的基因资源。
李欣芃, 张武汉, 张莉, 舒服, 何强, 郭杨, 邓华凤, 王悦, 孙平勇. γ射线诱变创制水稻突变体及其分子鉴定[J]. 生物技术通报, 2025, 41(3): 35-43.
LI Xin-peng, ZHANG Wu-han, ZHANG Li, SHU Fu, HE Qiang, GUO Yang, DENG Hua-feng, WANG Yue, SUN Ping-yong. Creation of Rice Mutant by Gamma-ray and Its Molecular Identification[J]. Biotechnology Bulletin, 2025, 41(3): 35-43.
水稻材料 Rice material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 长宽比 Length-width ratio | 千粒重 Thousand-seed weight/g |
---|---|---|---|---|
NIL-GRF4 | 12.60±0.46 | 2.69±0.20 | 4.68±0.27 | 36.95 |
23cs3 | 11.98±0.73 | 3.30±0.20 | 3.63±0.33 | 44.30 |
23cs4 | 12.29±0.51 | 2.73±0.17 | 4.50±0.12 | 39.34 |
23cs5 | 11.07±0.43 | 2.80±0.19 | 3.95±0.45 | 37.98 |
23cs6 | 9.94±0.69 | 3.11±0.19 | 3.20±0.03 | 35.71 |
23cs7 | 11.05±0.62 | 3.41±0.20 | 3.24±0.05 | 36.06 |
23cs8 | 11.22±0.54 | 2.69±0.24 | 4.17±0.21 | 36.89 |
23cs9 | 11.04±0.63 | 2.78±0.20 | 3.97±0.10 | 32.07 |
23cs10 | 9.00±0.54 | 2.16±0.19 | 4.17±0.14 | 24.40 |
23cs11 | 10.86±0.46 | 2.75±0.19 | 3.95±0.12 | 36.80 |
23cs22 | 10.43±0.53 | 2.59±0.19 | 4.03±0.11 | 29.29 |
23cs24 | 10.57±0.46 | 2.66±0.19 | 3.97±0.26 | 28.10 |
23cs25 | 11.04±0.53 | 2.66±0.25 | 4.15±0.24 | 35.28 |
23cs31 | 10.95±0.52 | 2.67±0.20 | 4.10±0.49 | 32.06 |
23cs32 | 14.10±0.69 | 2.77±0.22 | 5.09±0.19 | 45.80 |
23cs33 | 9.68±0.53 | 2.98±0.15 | 3.25±0.04 | 36.97 |
表1 野生型与粒型突变体表型比较
Table 1 Comparison of phenotype between wild-type and grain shape mutants
水稻材料 Rice material | 粒长 Grain length/mm | 粒宽 Grain width/mm | 长宽比 Length-width ratio | 千粒重 Thousand-seed weight/g |
---|---|---|---|---|
NIL-GRF4 | 12.60±0.46 | 2.69±0.20 | 4.68±0.27 | 36.95 |
23cs3 | 11.98±0.73 | 3.30±0.20 | 3.63±0.33 | 44.30 |
23cs4 | 12.29±0.51 | 2.73±0.17 | 4.50±0.12 | 39.34 |
23cs5 | 11.07±0.43 | 2.80±0.19 | 3.95±0.45 | 37.98 |
23cs6 | 9.94±0.69 | 3.11±0.19 | 3.20±0.03 | 35.71 |
23cs7 | 11.05±0.62 | 3.41±0.20 | 3.24±0.05 | 36.06 |
23cs8 | 11.22±0.54 | 2.69±0.24 | 4.17±0.21 | 36.89 |
23cs9 | 11.04±0.63 | 2.78±0.20 | 3.97±0.10 | 32.07 |
23cs10 | 9.00±0.54 | 2.16±0.19 | 4.17±0.14 | 24.40 |
23cs11 | 10.86±0.46 | 2.75±0.19 | 3.95±0.12 | 36.80 |
23cs22 | 10.43±0.53 | 2.59±0.19 | 4.03±0.11 | 29.29 |
23cs24 | 10.57±0.46 | 2.66±0.19 | 3.97±0.26 | 28.10 |
23cs25 | 11.04±0.53 | 2.66±0.25 | 4.15±0.24 | 35.28 |
23cs31 | 10.95±0.52 | 2.67±0.20 | 4.10±0.49 | 32.06 |
23cs32 | 14.10±0.69 | 2.77±0.22 | 5.09±0.19 | 45.80 |
23cs33 | 9.68±0.53 | 2.98±0.15 | 3.25±0.04 | 36.97 |
图1 野生型NIL-GRF4与突变体的粒型和叶色比较A:野生型NIL-GRF4与突变体的粒型对比;B:野生型NIL-GRF4与突变体的叶色对比,左边为斑马叶突变体,右边为野生型;C:突变体23cs20的田间叶色表型
Fig. 1 Comparison of grain shape and leaf color between wild type NIL-GRF4 and mutantsA: Comparison of grain shape between wild-type NIL-GRF4 and mutants; B: leaf color comparison between wild-type NIL-GRF4 and mutants, the one on the left is the zebra leaf mutant, and the one on the right is the wild type; C: leaf color phenotype of mutant 23cs20 in field
材料 Rice material | 穗长 Spike length/cm | 总粒数 Total grains | 实粒数 Filled grain number | 一次枝梗 Number of primary branches | 二次枝梗 Number of secondary branches | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|
NIL-GRF4 | 32.9±0.35 | 207±12.70 | 128±5.58 | 14±1.00 | 33±3.06 | 62.01±2.42 |
23cs13 | 33.3±1.06 | 186±19.00 | 5±0.58 | 13±0.58 | 35±4.04 | 2.50±0.43 |
23cs14 | 32.8±0.36 | 186±4.93 | 6±1.53 | 12±0 | 32±1.00 | 3.05±0.75 |
23cs29 | 32.4±0.47 | 232±2.64 | 14±1.73 | 12±0 | 44±1.73 | 6.03±0.68 |
表2 野生型与不育突变体的穗部性状比较
Table 2 Comparison of panicle traits between wild type and sterile mutants
材料 Rice material | 穗长 Spike length/cm | 总粒数 Total grains | 实粒数 Filled grain number | 一次枝梗 Number of primary branches | 二次枝梗 Number of secondary branches | 结实率 Seed setting rate/% |
---|---|---|---|---|---|---|
NIL-GRF4 | 32.9±0.35 | 207±12.70 | 128±5.58 | 14±1.00 | 33±3.06 | 62.01±2.42 |
23cs13 | 33.3±1.06 | 186±19.00 | 5±0.58 | 13±0.58 | 35±4.04 | 2.50±0.43 |
23cs14 | 32.8±0.36 | 186±4.93 | 6±1.53 | 12±0 | 32±1.00 | 3.05±0.75 |
23cs29 | 32.4±0.47 | 232±2.64 | 14±1.73 | 12±0 | 44±1.73 | 6.03±0.68 |
图2 不育和分蘖突变体的表型A:野生型育性镜检;B:突变体育性镜检;C:野生型NIL-GRF4与不育突变体23cs29的结实率对比;D:野生型NIL-GRF4与突变体23cs29的不育对比;E:野生型NIL-GRF4与突变体23cs26的分蘖、株高对比。左边为野生型,右边为突变体
Fig. 2 Phenotypes of sterile and tillering mutantsA: Microscopic examination of wild type fertility. B: Microscopic examination of mutant fertility. C: Comparison of seed setting rates between wild type NIL-GRF4 and sterile mutant 23cs29. D: Comparison of sterility between wild type NIL-GRF4 and mutant 23cs29. E: Comparison of tiller and plant height between wild type NIL-GRF4 and mutant 23cs26. Wild type on the left and mutant on the right
图3 功能标记对野生型、突变体的基因型鉴定M: 250 bp maker;A和C:PF+DMR+PR引物组合;B和D: PF+XMR+PR引物组合;1-26:突变体;27-33:分别为NIL-GRF4、华航32号、湘早籼6号、赣宁粳1号、农香42、川7和竹香占
Fig. 3 Genotypic identification of wild type and mutants by functional markersM: 250 bp maker; A and C: PF+DMR+PR primer combination; B and D: PF+XMR+PR primer combination; 1-26: mutants; 27-33: NIL-GRF4, Huahang 32, Xiangzaoxian 6, Ganninggeng 1, Nongxiang 42, Chuan 7 and Zhuxiangzhan, respectively
图4 SSR引物对野生型NIL-GRF4与突变体的扩增结果M: 100 bp maker;1-16:分别为引物RM471、RM72、RM19、RM119、RM339、RM17、RM551、RM331、RM3331、RM443、RM85、RM336、RM209、RM232、RM481、RM224;DNA顺序为野生型、突变体23cs13、23cs22
Fig. 4 Amplification of wild-type NIL-GRF4 and mutants by SSR primersM: 100 bp maker; 1-16: primer RM471, RM72, RM19, RM119, RM339, RM17, RM551, RM331, RM3331, RM443, RM85, RM336, RM209, RM232, RM481, RM224, respectively; DNA sequence is wild type, mutant 23cs13 and 23cs22
1 | 石少龙. 中国大米安全风险分析 [J]. 中国稻米, 2020, 26(1): 6-10. |
Shi SL. Analysis on the risk of rice safety in China [J]. China Rice, 2020, 26(1): 6-10. | |
2 | 王楠, 陈从喜, 郭文华, 等. 中国耕地面积-粮食产量重心迁移轨迹特征及空间错位关系 [J]. 济南大学学报: 自然科学版, 2024, 38(1): 53-60. |
Wang N, Chen CX, Guo WH, et al. Characteristics of transfer trajectory of barycenter and spatial mismatch relationship between cultivated land area and grain yield in China [J]. J Univ Jinan Sci Technol, 2024, 38(1): 53-60. | |
3 | 丁佳宁, 周利斌. 我国水稻辐射诱变育种研究进展 [J]. 辐射研究与辐射工艺学报, 2024, 42(2): 4-20. |
Ding JN, Zhou LB. Progress on radiation-induced mutation breeding of rice in China [J]. J Radiat Res Radiat Process, 2024, 42(2): 4-20. | |
4 | 吴正景, 职钤华, 刘素娟, 等. 化学诱变提高植物抗逆性的研究进展 [J]. 核农学报, 2024, 38(2): 274-281. |
Wu ZJ, Zhi QH, Liu SJ, et al. Chemical mutagenesis in improving plant stress resistance [J]. J Nucl Agric Sci, 2024, 38(2): 274-281. | |
5 | 郎红, 赵云昊, 姜明亮. 航天诱变育种在园艺作物中的应用进展 [J]. 北方园艺, 2024, (14):135-141. |
Lang H, Zhao YH, Jiang ML. Research progress on space mutation breeding application of horticultural crops [J]. Northern Horticulture, 2024, (14):135-141. | |
6 | Mudgett JS, Taylor WD. Recombination between irradiated shuttle vector DNA and chromosomal DNA in African green monkey kidney cells [J]. Mol Cell Biol, 1990, 10(1): 37-46. |
7 | Takahashi N, Hieda K, Morohoshi F, et al. Base substitution spectra of nalidixylate resistant mutations induced by monochromatic soft X and 60Co gamma-rays in Bacillus subtilis spores [J]. J Radiat Res, 1999, 40(2): 115-124. |
8 | 刘宝海, 刘晴, 聂守军, 等. 60Co-γ辐射对广适性水稻品种绥粳18的诱变影响 [J]. 安徽农业大学学报, 2021, 48(4): 523-530. |
Liu BH, Liu Q, Nie SJ, et al. Mutagenic effect of 60Co-γ on radiation widely-adapted rice variety Suijing18 [J]. J Anhui Agric Univ, 2021, 48(4): 523-530. | |
9 | 赵新辉, 唐倩莹, 周群丰, 等. 辐射诱变华恢8612创制镉低积累水稻新种质辐8612-12 [J]. 杂交水稻, 2024, 39(1): 44-52. |
Zhao XH, Tang QY, Zhou QF, et al. New rice germplasm fu 8612-12 with low cadmium accumulation was created by radiation mutagenesis of Huahui 8612 [J]. Hybrid Rice, 2024, 39(1): 44-52. | |
10 | 韶也, 彭彦, 毛毕刚, 等. M1TDS技术及镉低积累杂交水稻亲本创制与组合选育 [J]. 杂交水稻, 2022, 37(1): 1-11. |
Shao Y, Peng Y, Mao BG, et al. M1TDS technology and creation of low-cadmium accumulation parents for hybrid rice breeding [J]. Hybrid Rice, 2022, 37(1): 1-11. | |
11 | 吴孝波, 冯慧, 黄强, 等. 利用辐射诱变技术创制抗稻瘟病紫叶两系水稻新材料 [J]. 四川农业科技, 2018(8): 47-49. |
Wu XB, Feng H, Huang Q, et al. Creation of new purple-leaf two-line rice materials with rice blast resistance by radiation mutation technology [J]. Sichuan Agric Sci Technol, 2018(8): 47-49. | |
12 | 章清杞, 李美德, 黄荣华. 巨胚糯稻恢复系福巨糯2号的选育 [J]. 杂交水稻, 2020, 35(5): 27-30. |
Zhang QQ, Li MD, Huang RH. Breeding of waxy rice restorer line fujunuo 2 with giant embryo [J]. Hybrid Rice, 2020, 35(5): 27-30. | |
13 | 李景鹏, 余丽霞, 张鑫, 等. 水稻新品种东稻122选育及应用 [J]. 北方水稻, 2021, 51(6): 44-47. |
Li JP, Yu LX, Zhang X, et al. Breeding and application of a new rice variety Dongdao-122 [J]. N Rice, 2021, 51(6): 44-47. | |
14 | Zhang WH, Sun PY, He Q, et al. Fine mapping of GS2 a dominant gene for big grain rice [J]. Crop J, 2013, 1(2): 160-165. |
15 | Sun PY, Zhang WH, Wang YH, et al. OsGRF4 controls grain shape, panicle length and seed shattering in rice [J]. J Integr Plant Biol, 2016, 58(10): 836-847. |
16 | 孙平勇, 张武汉, 张莉, 等. 水稻氮高效、耐冷基因OsGRF4功能标记的开发及其利用 [J]. 作物学报, 2021, 47(4): 684-690. |
Sun PY, Zhang WH, Zhang L, et al. Development and application of functional marker for high nitrogen use efficiency and chilling tolerance gene OsGRF4 in rice [J]. Acta Agron Sin, 2021, 47(4): 684-690. | |
17 | Li S, Tian YH, Wu K, et al. Modulating plant growth-metabolism coordination for sustainable agriculture [J]. Nature, 2018, 560(7720): 595-600. |
18 | Che RH, Tong HN, Shi BH, et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses [J]. Nat Plants, 2015, 2: 15195. |
19 | Duan PG, Ni S, Wang JM, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice [J]. Nat Plants, 2015, 2: 15203. |
20 | Hu J, Wang YX, Fang YX, et al. A rare allele of GS2 enhances grain size and grain yield in rice [J]. Mol Plant, 2015, 8(10): 1455-1465. |
21 | Li SC, Gao FY, Xie KL, et al. The OsmiR396c-OsGRF4-OsGIF1 regulatory module determines grain size and yield in rice [J]. Plant Biotechnol J, 2016, 14(11): 2134-2146. |
22 | 胡书娟, 刘璐, 陈希, 等. 利用PCR产物确定杂交水稻品种与亲本间的亲缘关系 [J]. 杂交水稻, 2020, 35(1): 45-47. |
Hu SJ, Liu L, Chen X, et al. Identification of genetic relationship of hybrid rice varieties to their parents with PCR amplification products [J]. Hybrid Rice, 2020, 35(1): 45-47. | |
23 | 张刚, 朱林, 聂豪杰, 等. 基于文献计量学BSA在作物育种领域的应用现状与展望 [J]. 遗传, 2024,46(5):360-372. |
Zhang G, Zhu L, Nie HJ, et al. Application and prospect of BSA method based on bibliometrics in crop breeding [J]. Hereditas (Beijing), 2024,46(5):360-372. | |
24 | 陈析丰, 刘亚萍, 马伯军. 图位克隆技术新型遗传学实验教学项目的设计与实践 [J]. 植物学报, 2019, 54(6): 797-803. |
Chen XF, Liu YP, Ma JM. Design and practice of a new teaching project of the map-based cloning experiment in genetics [J]. Chin Bull Bot, 2019, 54(6): 797-803. | |
25 | Giovannoni JJ, Wing RA, Ganal MW, et al. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations [J]. Nucleic Acids Res, 1991, 19(23): 6553-6558. |
26 | Michelmore RW, Paran I, Kesseli RV. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc Natl Acad Sci USA, 1991, 88(21): 9828-9832. |
27 | Zhang JB, Panthee DR. PyBSASeq: a simple and effective algorithm for bulked segregant analysis with whole-genome sequencing data [J]. BMC Bioinformatics, 2020, 21(1): 99. |
28 | Young ND. Potential applications of map-based cloning to plant pathology [J]. Physiol Mol Plant Pathol, 1990, 37(2): 81-94. |
29 | 朱洪慧, 李映姿, 高远卓, 等. 水稻短宽粒基因SWG1的图位克隆 [J]. 中国农业科学, 2023, 56(7): 1260-1274. |
Zhu HH, Li YZ, Gao YZ, et al. Map-based cloning of the short and widen grain 1 gene in rice(Oryza sativa L.) [J]. Sci Agric Sin, 2023, 56(7): 1260-1274. | |
30 | Majeed A, Johar P, Raina A, et al. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding [J]. Front Genet, 2022, 13: 944501. |
31 | Gao YH, Xu ZP, Zhang LJ, et al. MYB61 is regulated by GRF4 and promotes nitrogen utilization and biomass production in rice [J]. Nat Commun, 2020, 11(1): 5219. |
32 | Chen XL, Jiang LR, Zheng JS, et al. A missense mutation in Large Grain Size 1 increases grain size and enhances cold tolerance in rice [J]. J Exp Bot, 2019, 70(15): 3851-3866. |
33 | 曹煜东, 肖湘谊, 叶乃忠, 等. 生长素调控因子OsGRF4协同调控水稻粒形和稻瘟病抗性 [J]. 中国水稻科学, 2021, 35(6): 629-638. |
Cao YD, Xiao XY, Ye NZ, et al. Auxin regulator OsGRF4 simultaneously regulates rice grain shape and blast resistance [J]. Chin J Rice Sci, 2021, 35(6): 629-638. | |
34 | 林孝欣, 黄明江, 韦祎, 等. 水稻籽粒伸长突变体lgdp的鉴定与基因定位 [J]. 作物学报, 2023, 49(6): 1699-1707. |
Lin XX, Huang MJ, Wei Y, et al. Identification and gene mapping of long grain and degenerated Palea (lgdp) in rice (Oryza sativa L.) [J]. Acta Agron Sin, 2023, 49(6): 1699-1707. | |
35 | 黄仁权, 曾晓芳, 赵德刚. 贵州地方稻种来拢大粒突变体bs3光合特性分析 [J]. 分子植物育种, 2018, 16(20): 6847-6854. |
Huang RQ, Zeng XF, Zhao DG. Photosynthetic characterization of big seed mutant bs3 from Guizhou local cultivar rice lailong [J]. Mol Plant Breed, 2018, 16(20): 6847-6854. | |
36 | 徐林峰, 张伟, 毛光峰, 等. 水稻长粒突变体"浙恢7954-LG2" 的特性及其应用价值 [J]. 作物研究, 2013, 27(1): 1-4. |
Xu LF, Zhang W, Mao GF, et al. Characteristics of long-grain mutant"Zhehui 7954-LG2"in rice and its application value [J]. Crop Res, 2013, 27(1): 1-4. | |
37 | 管柳蓉, 刘祖培, 徐冉, 等. 一个新的OsBRI1弱等位突变体的鉴定及其调控种子大小的功能研究 [J]. 植物学报, 2020, 55(3): 279-286. |
Guan LR, Liu ZP, Xu R, et al. Identification of a new OsBRI1 weak allele and analysis of its function in grain size control [J]. Chin Bull Bot, 2020, 55(3): 279-286. | |
38 | 高海京, 杨芝笛. 水稻小粒突变体tm282的遗传分析和初步定位 [J]. 南方农业, 2023, 17(12): 248-251. |
Gao HJ, Yang ZD. Genetic analysis and preliminary localization of rice small grain mutant tm282 [J]. South China Agric, 2023, 17(12): 248-251. | |
39 | 张青, 符永庆, 钟其全, 等. 基于叶色标记不育系的杂交水稻全程机械化制种技术 [J]. 杂交水稻, 2021, 36(5): 25-28. |
Zhang Q, Fu YQ, Zhong QQ, et al. Full mechanization seed production techniques of hybrid rice based on leaf color labeling sterile line [J]. Hybrid Rice, 2021, 36(5): 25-28. | |
40 | 董凤高, 朱旭东, 熊振民, 等. 以淡绿叶为标记的籼型光—温敏核不育系M2S的选育 [J]. 中国水稻科学, 1995, 9(2): 65-70. |
Dong FG, Zhu XD, Xiong ZM, et al. Breeding of a photo-thermoperiod sensitive genie male sterile indica rice with a pale-green-leaf marker [J]. Chin J Rice Sci, 1995, 9(2): 65-70. | |
41 | 沈圣泉, 舒庆尧, 吴殿星, 等. 白化转绿型水稻三系不育系白丰A的选育 [J]. 杂交水稻, 2005, 20(5): 10-11. |
Shen SQ, Shu QY, Wu DX, et al. Breeding of new rice CMS line Baifeng A with a green-revertible albino leaf color marker [J]. Hybrid Rice, 2005, 20(5): 10-11. |
[1] | 方慧敏, 顾艺枢, 张晶, 张龙. 水稻叶片淀粉的分离与理化性质分析[J]. 生物技术通报, 2025, 41(2): 51-57. |
[2] | 金素奎, 国倩倩, 刘巧泉, 高继平. 一种水稻叶片基因组DNA简易提取方法[J]. 生物技术通报, 2025, 41(1): 74-84. |
[3] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[4] | 朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180. |
[5] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[6] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[7] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[8] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[9] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[10] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[11] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[12] | 邹修为, 岳佳妮, 李志宇, 戴良英, 李魏. 水稻热激转录因子HsfA2b调控非生物胁迫抗性的功能分析[J]. 生物技术通报, 2024, 40(2): 90-98. |
[13] | 张超, 王子瑞, 孙亚丽, 毛馨晨, 唐家琪, 于恒秀. 水稻维生素B1合成相关基因OsTHIC的功能研究[J]. 生物技术通报, 2024, 40(2): 99-108. |
[14] | 戚旺, 毕一凡, 轩强兵, 张新, 周慧岗, 聂圆情, 程彪彪, 张禹舜, 王俊杰, 梁卫红. 水稻OsRhoGDI1过表达影响粒型及种子活力[J]. 生物技术通报, 2024, 40(11): 152-161. |
[15] | 乔承彬, 宋佳伟, 杨辉, 段凯蓉, 冉杰, 孔维儒, 冯培媛, 罗成科, 李培富, 田蕾. 水稻叶宽调控机制及相关基因研究进展[J]. 生物技术通报, 2024, 40(11): 88-102. |
阅读次数 | ||||||||||||||||||||||||||||||||||
全文 76
|
|
|||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||