生物技术通报 ›› 2024, Vol. 40 ›› Issue (11): 152-161.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0405
戚旺(), 毕一凡, 轩强兵, 张新, 周慧岗, 聂圆情, 程彪彪, 张禹舜, 王俊杰, 梁卫红()
收稿日期:
2024-04-28
出版日期:
2024-11-26
发布日期:
2024-12-19
通讯作者:
梁卫红,女,博士,教授,研究方向:水稻发育分子细胞生物学;E-mail: liangwh@htu.edu.cn作者简介:
戚旺,男,硕士研究生,研究方向:细胞信号转导及生理功能;E-mail: 1322496124@qq.com毕一凡为本文共同第一作者
基金资助:
QI Wang(), BI Yi-fan, XUAN Qiang-bing, ZHANG Xin, ZHOU Hui-gang, NIE Yuan-qing, CHENG Biao-biao, ZHANG Yu-shun, WANG Jun-jie, LIANG Wei-hong()
Received:
2024-04-28
Published:
2024-11-26
Online:
2024-12-19
摘要:
【目的】 水稻OsRhoGDI1是前期利用酵母双杂交技术从幼穗中分离的一个与Rho/Rop蛋白OsRac5相互作用蛋白的编码基因,预期编码一种功能未知的Rho GDP解离抑制因子,采用转基因技术鉴定该基因的功能,为后续研究OsRhoGDI1与OsRac5在水稻生长发育中的功能奠定基础。【方法】 构建OsRhoGDI1过表达载体,转化水稻筛选阳性植株,对转基因水稻粒型和萌发特征开展分析,通过RT-qPCR分析粒型调控基因在籽粒发育中的表达,采用扫描电镜检测颖壳细胞特征;比较转基因水稻和对照水稻的萌发特征,并采用RT-qPCR检测GA和ABA合成、分解相关基因,以及α-淀粉酶基因在萌发种子中的相对表达水平,开展α-淀粉酶定性及定量分析。【结果】 与对照水稻相比,OsRhoGDI1过表达水稻的粒长极显著增加,粒宽、粒厚和千粒重均极显著降低,粒型调控基因GS2、GS5、GS6与GLW7在水稻幼穗中的表达水平均不同程度地降低,而GW2表达水平提高;转基因水稻外颖壳细胞的长度增加、宽度降低。转基因水稻种子萌发早于对照,且GA合成基因、ABA分解基因及α-淀粉酶基因的表达水平均不同程度提高,而GA分解基因与ABA合成基因表达水平降低;α-淀粉酶活性在转基因水稻种子萌发过程中显著提高。【结论】 OsRhoGDI1过表达通过改变粒型调控基因表达水平,导致颖壳表皮细胞伸长,引起粒长变长,粒宽变窄;同时该基因过表达还通过改变萌发相关基因表达水平,提高α-淀粉酶活性,促进种子萌发。
戚旺, 毕一凡, 轩强兵, 张新, 周慧岗, 聂圆情, 程彪彪, 张禹舜, 王俊杰, 梁卫红. 水稻OsRhoGDI1过表达影响粒型及种子活力[J]. 生物技术通报, 2024, 40(11): 152-161.
QI Wang, BI Yi-fan, XUAN Qiang-bing, ZHANG Xin, ZHOU Hui-gang, NIE Yuan-qing, CHENG Biao-biao, ZHANG Yu-shun, WANG Jun-jie, LIANG Wei-hong. Overexpression of OsRhoGDI1 Gene Regulates Grain Shape and Seed Vigor in Rice[J]. Biotechnology Bulletin, 2024, 40(11): 152-161.
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose | |
---|---|---|---|
OsRhoGDI1-CDS | F1: GAGGTACCCGGGGATCC TCTAGA ATGTCGTCGGCGGTGGATG | R1: ATTAAAGCAGGGCATGC CTGCAG TCAGCTCAACGCCGGCCACTCTC | OsRhoGDI1过表达载体构建及转基因水稻鉴定引物 Primers for the vector construction of OsRhoGDI1 overexpression and for validation of transgenic rice |
Hyg | F2:ACGGTGTCGTCCATCACAGT TTGCC | R2:TTCCGGAAGTGCTTGACATT GGGGA | |
OsRhoGDI1-PCR | F3: GCCATTGCTGGATCCAACC | R3: CCTCCTACGGAGTTCAAATCCA | |
OsRhoGDI1-qPCR | F4: TCAAGGAGGGCTCCCTCTAC | R4: GAGCATCTCCTTGTGGCTGT | |
OsAct1-qPCR | F5: CATGCTATCCCTCGTCTCGACCT | R5: CGCACTTCATGATGGAGTTGTAT | |
GW2 | F6: TTTTCAGTGCCGTCATACC | R6: TTTTCAGTGCCGTCATACC | 粒型调控基因表达水平检测引物 Primers for detecting the expressions of grain-shape-regulating genes |
GW8 | F7: AGGAGTTTGATGAGGCCAAG | R7: GCGTGTAGTATGGGCTCTCC | |
GS2 | F8: TGCGTCCCTTCTTTGATGAGT | R8: ACAGTTGGGTGCCTGAGAATG | |
GS5 | F9: TTTGGCTGAGTATGCCTGGAGCA TCTGCACA | R9: ATTTGCGAAGAATGCACGAT TATGCTGGAA | |
GS6 | F10: TGCGGATACTCAACGCCATCA | R10: ACTCGCCGACTCCGGTGATC | |
GLW7 | F11: TATCCCTTTCAACCTTTTCCA | R11: GACGACGAGCTAGTGCTACTGT | |
OsGA20ox1 | F12: TTCTTCCTCTGCCCGGAGAT | R12: CATGTCGGCCCTGTAGTGG | GA、ABA代谢基因表达水平检测引物 Primers for detecting the expressions of metabolic gene GA and ABA |
OsGA3ox2 | F13: CTTCTGTGACGTGATGGAGGAG | R13:CTCAAGAACAACCTCAGCAACTC | |
OsGA2ox3 | F14: TCGTTGCAGGTTCTGACCAA | R14: TGGCAATGGTGCAATCCTCT | |
OsGA2ox8 | F15: GCATGAATCGCAGGAGATCG | R15: CCACGTCTTGTGCTGGCTAT | |
OsNCED5 | F16:ACATCCGAGCTCCTCGTCGTGAA | R16:TTGGAAGGTGTTTTGGAATGAACCA | |
OsABA8ox2 | F17: CTACTGCTGATGGTGGCTGA | R17: CCCATGGCCTTTGCTTTAT | |
OsABA1 | F18: GAGTTGGTGGGAGATTCTTCAT | R18: CAGCTTAACGGTCTTCCTTCT | |
OsAmy1A | F19: TTTCGGTCCTCATCGTCCTCC | R19: TCCACGACTCCCAGTTGAATC | α-amylase基因表达水平检测引物 Primers for detecting the expression of α-amylase genes |
OsAmy2A | F20: CAGGGGTTCAACTGGGAGTC | R20: CATGTACCCTTGCGTGGAGA | |
OsAmy3A | F21: CTCTTCCAGGGTTTTAACTGGGA | R21: GCATGCTACAAAGAGAAGCGT | |
OsAmy3E | F22: TCACCCTGTGTTGTGTCGTT | R22: AAAGTTGTACCACCCGCCTT |
表1 本研究所用引物序列
Table 1 Primer sequences used in this study
引物名称 Primer name | 引物序列 Primer sequence(5'-3') | 用途 Purpose | |
---|---|---|---|
OsRhoGDI1-CDS | F1: GAGGTACCCGGGGATCC TCTAGA ATGTCGTCGGCGGTGGATG | R1: ATTAAAGCAGGGCATGC CTGCAG TCAGCTCAACGCCGGCCACTCTC | OsRhoGDI1过表达载体构建及转基因水稻鉴定引物 Primers for the vector construction of OsRhoGDI1 overexpression and for validation of transgenic rice |
Hyg | F2:ACGGTGTCGTCCATCACAGT TTGCC | R2:TTCCGGAAGTGCTTGACATT GGGGA | |
OsRhoGDI1-PCR | F3: GCCATTGCTGGATCCAACC | R3: CCTCCTACGGAGTTCAAATCCA | |
OsRhoGDI1-qPCR | F4: TCAAGGAGGGCTCCCTCTAC | R4: GAGCATCTCCTTGTGGCTGT | |
OsAct1-qPCR | F5: CATGCTATCCCTCGTCTCGACCT | R5: CGCACTTCATGATGGAGTTGTAT | |
GW2 | F6: TTTTCAGTGCCGTCATACC | R6: TTTTCAGTGCCGTCATACC | 粒型调控基因表达水平检测引物 Primers for detecting the expressions of grain-shape-regulating genes |
GW8 | F7: AGGAGTTTGATGAGGCCAAG | R7: GCGTGTAGTATGGGCTCTCC | |
GS2 | F8: TGCGTCCCTTCTTTGATGAGT | R8: ACAGTTGGGTGCCTGAGAATG | |
GS5 | F9: TTTGGCTGAGTATGCCTGGAGCA TCTGCACA | R9: ATTTGCGAAGAATGCACGAT TATGCTGGAA | |
GS6 | F10: TGCGGATACTCAACGCCATCA | R10: ACTCGCCGACTCCGGTGATC | |
GLW7 | F11: TATCCCTTTCAACCTTTTCCA | R11: GACGACGAGCTAGTGCTACTGT | |
OsGA20ox1 | F12: TTCTTCCTCTGCCCGGAGAT | R12: CATGTCGGCCCTGTAGTGG | GA、ABA代谢基因表达水平检测引物 Primers for detecting the expressions of metabolic gene GA and ABA |
OsGA3ox2 | F13: CTTCTGTGACGTGATGGAGGAG | R13:CTCAAGAACAACCTCAGCAACTC | |
OsGA2ox3 | F14: TCGTTGCAGGTTCTGACCAA | R14: TGGCAATGGTGCAATCCTCT | |
OsGA2ox8 | F15: GCATGAATCGCAGGAGATCG | R15: CCACGTCTTGTGCTGGCTAT | |
OsNCED5 | F16:ACATCCGAGCTCCTCGTCGTGAA | R16:TTGGAAGGTGTTTTGGAATGAACCA | |
OsABA8ox2 | F17: CTACTGCTGATGGTGGCTGA | R17: CCCATGGCCTTTGCTTTAT | |
OsABA1 | F18: GAGTTGGTGGGAGATTCTTCAT | R18: CAGCTTAACGGTCTTCCTTCT | |
OsAmy1A | F19: TTTCGGTCCTCATCGTCCTCC | R19: TCCACGACTCCCAGTTGAATC | α-amylase基因表达水平检测引物 Primers for detecting the expression of α-amylase genes |
OsAmy2A | F20: CAGGGGTTCAACTGGGAGTC | R20: CATGTACCCTTGCGTGGAGA | |
OsAmy3A | F21: CTCTTCCAGGGTTTTAACTGGGA | R21: GCATGCTACAAAGAGAAGCGT | |
OsAmy3E | F22: TCACCCTGTGTTGTGTCGTT | R22: AAAGTTGTACCACCCGCCTT |
图1 OsRhoGDI1过表达水稻T0及T1代的鉴定 A:pCAMBIA1300Actin-OsRhoGDI1载体示意图(Actin Pro:肌动蛋白启动子,OCS ter:OCS终止子);B:OsRhoGDI1在T0代不同转基因水稻中的相对表达量;C-E:OsRhoGDI1在T1代不同转基因水稻中的相对表达量
Fig. 1 Identification of OsRhoGDI1 overexpressed rice in T0 and T1 generation A: Schematic of pCAMBIA1300Actin-OsRhoGDI1 vector(Actin Pro: Actin promoter; OCS ter: OCS terminator). B: Relative expression of OsRhoGDI1 in different transgenic rice in T0 generation. C-E: Relative expression of OsRhoGDI1 in different transgenic rice in T1 generation
Agronomic traits | WT | T1-2 | T1-8 | T1-24 |
---|---|---|---|---|
株高Plant height/cm | 94.68±0.97 | 92.76±0.96 | 89.59±0.80** | 92.89±0.61 |
穗长Panicle length/cm | 20.27±0.68 | 20.67±0.73 | 20.43±0.75 | 19.47±0.38 |
一级枝梗数Number of primary branches | 10.33±0.88 | 10.67±0.88 | 10.33±1.20 | 10.33±1.45 |
粒长Grain length/mm | 7.49±0.02 | 7.63±0.02** | 7.61±0.01** | 7.65±0.01** |
粒宽Grain width/mm | 3.38±0.01 | 3.28±0.01** | 3.22±0.01** | 3.27±0.01** |
粒厚Grain thickness/mm | 2.27±0.01 | 2.21±0.02** | 2.16±0.01** | 2.19±0.02** |
千粒重1000-grain weight/g | 26.88±0.12 | 25.25±0.02** | 24.37±0.05** | 25.64±0.3** |
表2 T1代OsRhoGDI1过表达水稻农艺学性状的统计分析
Table 2 Statistical analysis of agronomic traits of OsRhoGDI1 overexpressed rice in T1 generation
Agronomic traits | WT | T1-2 | T1-8 | T1-24 |
---|---|---|---|---|
株高Plant height/cm | 94.68±0.97 | 92.76±0.96 | 89.59±0.80** | 92.89±0.61 |
穗长Panicle length/cm | 20.27±0.68 | 20.67±0.73 | 20.43±0.75 | 19.47±0.38 |
一级枝梗数Number of primary branches | 10.33±0.88 | 10.67±0.88 | 10.33±1.20 | 10.33±1.45 |
粒长Grain length/mm | 7.49±0.02 | 7.63±0.02** | 7.61±0.01** | 7.65±0.01** |
粒宽Grain width/mm | 3.38±0.01 | 3.28±0.01** | 3.22±0.01** | 3.27±0.01** |
粒厚Grain thickness/mm | 2.27±0.01 | 2.21±0.02** | 2.16±0.01** | 2.19±0.02** |
千粒重1000-grain weight/g | 26.88±0.12 | 25.25±0.02** | 24.37±0.05** | 25.64±0.3** |
图2 OsRhoGDI1过表达水稻的籽粒表型 A:粒长表型;B:粒宽表型;标尺=1 cm;C-F:WT和OsRhoGDI1过表达水稻的粒长(C)、粒宽(D)、粒厚(E)和千粒重(F)统计学分析;WT:日本晴水稻;T1-2、T1-8、T1-24:OsRhoGDI1转基因水稻不同株系;n>100;*P<0.05,**P<0.01,下同
Fig. 2 Grain phenotypes of OsRhoGDI1-overexpressed rice A: Grain length. B: Grain width. Scale bar is 1 cm. C-F: Grain length(C), grain width(D), grain thickness(E)and 1 000-grain weight(F)in WT and OsRhoGDI1- overexpressed rice. WT: Nipponbare. T1-2, T1-8, T1-24: OsRhoGDI1 transgenic rice lines. n>100. *P<0.05, ** P<0.01. The same below
图4 WT与OsRhoGDI1过表达水稻颖壳结构分析 A:WT和转基因水稻的外颖壳细胞扫描电镜图,标尺=100 μm;B-D:WT和转基因水稻种子外颖壳表皮细胞数量(B)、细胞长度(C)和细胞宽度(D)
Fig. 4 Histological comparisons of the spikelet hulls between WT and OsRhoGDI1-overexpressed rice A: Scanning electron micrographs of the outer epidermal from WT and transgenic rice. Scale bar is 100 μm. B-D: Cell number(B), cell length(C)and cell width(D)in the outer layer of the spikelet hull of WT and transgenic rice
图6 OsRhoGDI1过表达水稻种子中GA和ABA代谢基因的表达水平检测 A:3个ABA代谢基因的表达水平检测;B:4个GA代谢基因的表达水平检测
Fig. 6 Expressions of metabolic gene GA and ABA in OsRhoGDI1-overexpressed rice seeds A: Expressions of 3 ABA metabolic genes. B: Expressions of 4 GA metabolic genes
图8 WT和OsRhoGDI1过表达水稻种子萌发过程中α-淀粉酶活性检测 A:α-淀粉酶活性定性检测;B:种子的直径大小;C:α-淀粉酶活性定量检测
Fig. 8 α-amylase activity during the germination of WT and OsRhoGDI1-ove-rexpressed rice seeds A: Qualitative test of α-amylase activity. B: Diameter size of rice seeds. C: Quanti-tative test of α-amylase activity
[1] | Xie LX, Tan ZW, Zhou Y, et al. Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice[J]. J Integr Plant Biol, 2014, 56(8): 749-759. |
[2] | He W, Wang L, Lin QL, et al. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors[J]. J Integr Plant Biol, 2021, 63(12): 1999-2019. |
[3] | Tappiban P, Ying YN, Xu FF, et al. Proteomics and post-translational modifications of starch biosynthesis-related proteins in developing seeds of rice[J]. Int J Mol Sci, 2021, 22(11): 5901. |
[4] | Wang WJ, Huang RZ, Wu GW, et al. Transcriptomic and QTL analysis of seed germination vigor under low temperature in weedy rice WR04-6[J]. Plants, 2023, 12(4): 871. |
[5] | Hou DP, Bi JG, Ma L, et al. Effects of soil moisture content on germination and physiological characteristics of rice seeds with different specific gravity[J]. Agronomy, 2022, 12(2): 500. |
[6] | 杨蓉兰, 朱明东, 余应弘. 水稻种子活力的分子遗传与调控机理研究进展[J]. 杂交水稻, 2023, 38(4): 1-11. |
Yang RL, Zhu MD, Yu YH. Research advances in molecular genetics and regulatory mechanisms of rice seed vigor[J]. Hybrid Rice, 2023, 38(4): 1-11. | |
[7] | Zhang H, Wang WQ, Liu SJ, et al. Proteome analysis of poplar seed vigor[J]. PLoS One, 2015, 10(7): e0132509. |
[8] | Wang XM, Tang QY, Mo WW. Seed filling determines seed vigour of superior and inferior spikelets during hybrid rice(Oryza sativa)seed production[J]. Seed Sci Technol, 2020, 48(2): 143-152. |
[9] | Huang M, Zhang RC, Chen JN, et al. Morphological and physiological traits of seeds and seedlings in two rice cultivars with contrasting early vigor[J]. Plant Prod Sci, 2017, 20(1): 95-101. |
[10] | Park JR, Seo J, Park S, et al. Identification of potential QTLs related to grain size in rice[J]. Plants, 2023, 12(9): 1766. |
[11] | Jiang HZ, Zhang AP, Liu XT, et al. Grain size associated genes and the molecular regulatory mechanism in rice[J]. Int J Mol Sci, 2022, 23(6): 3169. |
[12] | Ren DY, Ding CQ, Qian Q, et al. Molecular bases of rice grain size and quality for optimized productivity[J]. Sci Bull, 2023, 68(3): 314-350. |
[13] | 刘迪, 冯连杰, 梁卫红. 水稻粒型调控相关信号通路的鉴定与解析[J]. 中国生物化学与分子生物学报, 2023, 39(2): 212-221. |
Liu D, Feng LJ, Liang WH. Identification and analysis of grain shape related regulation signal pathways in rice[J]. Chin J Biochem Mol Biol, 2023, 39(2): 212-221. | |
[14] | 姚莎莎, 王晶晶, 王俊杰, 等. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
Yao SS, Wang JJ, Wang JJ, et al. Molecular mechanisms of rice grain size regulation related to plant hormone signaling pathways[J]. Biotechnol Bull, 2023, 39(8): 80-90. | |
[15] | Choi BS, Kim YJ, Markkandan K, et al. GW2 functions as an E3 ubiquitin ligase for rice expansin-like 1[J]. Int J Mol Sci, 2018, 19(7): 1904. |
[16] | Wang SK, Li S, Liu Q, et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality[J]. Nat Genet, 2015, 47(8): 949-954. |
[17] | Si LZ, Chen JY, Huang XH, et al. OsSPL13 controls grain size in cultivated rice[J]. Nat Genet, 2016, 48(4): 447-456. |
[18] | Duan PG, Ni S, Wang JM, et al. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice[J]. Nat Plants, 2015, 2: 15203. |
[19] | Hu J, Wang YX, Fang YX, et al. A rare allele of GS2 enhances grain size and grain yield in rice[J]. Mol Plant, 2015, 8(10): 1455-1465. |
[20] | Li YB, Fan CC, Xing YZ, et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice[J]. Nat Genet, 2011, 43(12): 1266-1269. |
[21] | Sun LJ, Li XJ, Fu YC, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. J Integr Plant Biol, 2013, 55(10): 938-949. |
[22] | 黎家, 李传友. 新中国成立70年来植物激素研究进展[J]. 中国科学: 生命科学, 2019, 49(10): 1227-1281. |
Li J, Li CY. Seventy-year major research progress in plant hormones by Chinese scholars[J]. Sci Sin Vitae, 2019, 49(10): 1227-1281. | |
[23] | Chen Y, Tan BC. New insight in the gibberellin biosynthesis and signal transduction[J]. Plant Signal Behav, 2015, 10(5): e1000140. |
[24] | Liu Y, Fang J, Xu F, et al. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars[J]. J Genet Genomics, 2014, 41(6): 327-338. |
[25] | Huang YS, Song JW, Hao QX, et al. WEAK SEED DORMANCY 1, an aminotransferase protein, regulates seed dormancy in rice through the GA and ABA pathways[J]. Plant Physiol Biochem, 2023, 202: 107923. |
[26] | He YG, Zhu MH, Li ZH, et al. IPA1 negatively regulates early rice seedling development by interfering with starch metabolism via the GA and WRKY pathways[J]. Int J Mol Sci, 2021, 22(12): 6605. |
[27] | Liu HL, Huang JQ, Zhang XJ, et al. The RAC/ROP GTPase activator OsRopGEF10 functions in crown root development by regulating cytokinin signaling in rice[J]. Plant Cell, 2023, 35(1): 453-468. |
[28] | Feng QN, Kang H, Song SJ, et al. Arabidopsis RhoGDIs are critical for cellular homeostasis of pollen tubes[J]. Plant Physiol, 2016, 170(2): 841-856. |
[29] | 梁卫红, 唐朝荣, 吴乃虎. 两种水稻GDP解离抑制蛋白基因的分离及特征分析[J]. 中国生物化学与分子生物学报, 2004, 20(6): 785-791. |
Liang WH, Tang CR, Wu NH. Isolation and characterization of two GDP dissociation inhibitor genes from Oryza sativa L.[J]. Chin J Biochem Mol Biol, 2004, 20(6): 785-791. | |
[30] | 刘洪梅, 梁卫红, 毕佳佳. 2种水稻OsRhoGDIs基因在幼穗组织中的原位杂交分析[J]. 河南农业科学, 2009, 38(12): 22-25. |
Liu HM, Liang WH, Bi JJ. In situ hybridization analysis of two rice OsRhoGDIs genes in young panicle[J]. J Henan Agric Sci, 2009, 38(12): 22-25. | |
[31] | 王凯婕, 安文静, 刘亚菲, 等. CRISPR/Cas9技术编辑OsRhoGDI2基因导致水稻半矮化[J]. 生物工程学报, 2020, 36(4): 707-715. |
Wang KJ, An WJ, Liu YF, et al. Disruption of OsRhoGDI2 by CRISPR/Cas9 technology leads to semi-dwarf in rice[J]. Chin J Biotechnol, 2020, 36(4): 707-715. | |
[32] | 徐欢, 周涛, 孙悦, 等. 水稻颖壳类病斑突变体glmm1的鉴定与基因定位[J]. 中国水稻科学, 2023, 37(5): 497-506. |
Xu H, Zhou T, Sun Y, et al. Characterization and gene mapping of a glume lesion mimic mutant glmm1 in rice[J]. Chin J Rice Sci, 2023, 37(5): 497-506. | |
[33] | Cheng YC, Li G, Yin M, et al. Verification and dissection of one quantitative trait locus for grain size and weight on chromosome 1 in rice[J]. Sci Rep, 2021, 11(1): 18252. |
[34] | You J, Chen WB, He ZF, et al. DEGENERATED LEMMA(DEL)regulates lemma development and affects rice grain yield[J]. Physiol Mol Biol Plants, 2023, 29(3): 335-347. |
[35] | Wu XB, Liu JX, Li DQ, et al. Rice caryopsis development I: dynamic changes in different cell layers[J]. J Integr Plant Biol, 2016, 58(9): 772-785. |
[36] | Zhao J, Li WJ, Sun S, et al. The rice small Auxin-up RNA gene OsSAUR33 regulates seed vigor via sugar pathway during early seed germination[J]. Int J Mol Sci, 2021, 22(4): 1562. |
[37] | Hu CC, Wu C, Yang MY, et al. Catalase associated with antagonistic changes of abscisic acid and gibberellin response, biosynthesis and catabolism is involved in eugenol-inhibited seed germination in rice[J]. Plant Cell Rep, 2023, 43(1): 10. |
[38] | Teshome S, Kebede M. Analysis of regulatory elements in GA2ox, GA3ox and GA20ox gene families in Arabidopsis thaliana: an important trait[J]. Biotechnol Biotechnol Equip, 2021, 35(1): 1603-1612. |
[39] | Zhang YJ, Liu X, Su R, et al. 9-cis-epoxycarotenoid dioxygenase 1 confers heat stress tolerance in rice seedling plants[J]. Front Plant Sci, 2022, 13: 1092630. |
[40] | Fu K, Song WH, Chen C, et al. Improving pre-harvest sprouting resistance in rice by editing OsABA8ox using CRISPR/Cas9[J]. Plant Cell Rep, 2022, 41(10): 2107-2110. |
[41] | Yang B, Chen MM, Zhan CF, et al. Identification of OsPK5 involved in rice glycolytic metabolism and GA/ABA balance for improving seed germination via genome-wide association study[J]. J Exp Bot, 2022, 73(11): 3446-3461. |
[42] | Damaris RN, Lin ZY, Yang PF, et al. The rice alpha-amylase, conserved regulator of seed maturation and germination[J]. Int J Mol Sci, 2019, 20(2): 450. |
[43] | Liu L, Xia W, Li H, et al. Salinity inhibits rice seed germination by reducing α-amylase activities via decreased bioactive gibberellin content[J]. Front Plant Sci, 2018, 9: 275. |
[1] | 刘文志, 贺丹, 李鹏, 傅应林, 张译心, 温华杰, 于文清. 多粘类芽胞杆菌新菌株X-11及其对番茄和水稻的促生效应[J]. 生物技术通报, 2024, 40(9): 249-259. |
[2] | 朱诗斐, 刘敬, 张家芊, 黄文坤, 彭德良, 孔令安, 彭焕. 水稻和拟禾本科根结线虫互作分子机制研究进展[J]. 生物技术通报, 2024, 40(9): 172-180. |
[3] | 李庆懋, 彭聪归, 齐笑含, 刘兴蕾, 李臻园, 李沁妍, 黄立钰. 促进水稻铁素吸收的野生稻内生细菌优良菌株的筛选与鉴定[J]. 生物技术通报, 2024, 40(8): 255-263. |
[4] | 孙志勇, 杜怀东, 刘阳, 马嘉欣, 于雪然, 马伟, 姚鑫杰, 王敏, 李培富. 水稻籽粒γ-氨基丁酸含量的全基因组关联分析[J]. 生物技术通报, 2024, 40(8): 53-62. |
[5] | 聂祝欣, 郭瑾, 乔子洋, 李微薇, 张学燕, 刘春阳, 王静. 黑果枸杞不同发育时期果实花色苷合成的转录组分析[J]. 生物技术通报, 2024, 40(8): 106-117. |
[6] | 庞梦真, 徐汉琴, 刘海燕, 宋娟, 王佳涵, 孙丽娜, 姬佩梅, 尹泽芝, 胡又川, 赵晓萌, 梁闪闪, 张泗举, 栾维江. 水稻黄化早抽穗突变体 hz1 的基因鉴定及功能分析[J]. 生物技术通报, 2024, 40(7): 125-136. |
[7] | 田胜尼, 张琴, 董玉飞, 丁洲, 叶爱华, 张明珠. 酸性矿山废水对成熟期水稻根区理化因子及固氮微生物的影响[J]. 生物技术通报, 2024, 40(6): 271-280. |
[8] | 刘蓉, 田闵玉, 李光泽, 谭成方, 阮颖, 刘春林. 甘蓝型油菜REVEILLE家族鉴定及诱导表达分析[J]. 生物技术通报, 2024, 40(6): 161-171. |
[9] | 王玉书, 赵琳琳, 赵爽, 胡琦, 白慧霞, 王欢, 曹业萍, 范震宇. 大白菜BrCYP83B1基因的克隆及表达分析[J]. 生物技术通报, 2024, 40(6): 152-160. |
[10] | 陈盈盈, 吴丁洁, 刘源, 张航, 刘艳娇, 王晶宇, 李瑞丽. 14-3-3蛋白及其在植物中的功能研究进展[J]. 生物技术通报, 2024, 40(4): 12-22. |
[11] | 杨淇, 魏子迪, 宋娟, 童堃, 杨柳, 王佳涵, 刘海燕, 栾维江, 马轩. 水稻组蛋白H1三突变体的创建和转录组学分析[J]. 生物技术通报, 2024, 40(4): 85-96. |
[12] | 李兴容, 谭志兵, 赵燕, 李曜魁, 赵炳然, 唐丽. 水稻低亲和性阳离子转运蛋白基因OsLCT3的克隆与功能研究[J]. 生物技术通报, 2024, 40(4): 97-109. |
[13] | 单新雨, 李太春, 杨若晨, 段香茹, 康佳, 张英杰, 刘月琴. γ-氨基丁酸对绵羊卵巢颗粒细胞凋亡及类固醇激素分泌的影响[J]. 生物技术通报, 2024, 40(3): 312-321. |
[14] | 陈艳梅. 蛋白质翻译后修饰之间的互作关系及其协同调控机理[J]. 生物技术通报, 2024, 40(2): 1-8. |
[15] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||