Biotechnology Bulletin ›› 2018, Vol. 34 ›› Issue (10): 71-80.doi: 10.13560/j.cnki.biotech.bull.1985.2018-0212
• Orginal Article • Previous Articles Next Articles
ZHOU Jia-sheng1, 2, WANG Peng1, 2, ZHOU Huang-mei2, XU Jin-ming2, ZHANG San-jun1, 2
Received:
2018-03-13
Online:
2018-10-26
Published:
2018-11-07
ZHOU Jia-sheng, WANG Peng, ZHOU Huang-mei, XU Jin-ming, ZHANG San-jun. Progress in Fluorescence Lifetime Imaging of Circularly-permuted Fluorescent Protein Biosensors[J]. Biotechnology Bulletin, 2018, 34(10): 71-80.
[1] Ormo M, Cubitt AB, Kallio K, et al.Crystal structure of the Aequorea victoria green fluorescent protein[J]. Science, 1996, 273(5280):1392-1395. [2] Yang F, Moss LG, Phillips GN.The molecular structure of green fluorescent protein[J]. Nature Biotechnology, 1996, 14(10):1246-1251. [3] Kawai Y, Sato M, Umezawa Y.Single color fluorescent indicators of protein phosphorylation for multicolor imaging of intracellular signal flow dynamics[J]. Analytical Chemistry, 2004, 76(20):6144-6149. [4] Baird GS, Zacharias DA, Tsien RY.Circular permutation and receptor insertion within green fluorescent proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20):11241-11246. [5] Topell S, Hennecke J, Glockshuber R.Circularly permuted variants of the green fluorescent protein[J]. Febs Letters, 1999, 457(2):283-289. [6] Belousov VV, Fradkov AF, Lukyanov KA, et al.Genetically encoded fluorescent indicator for intracellular hydrogen peroxide[J]. Nature Methods, 2006, 3(4):281-286. [7] Markvicheva KN, Bilan DS, Mishina NM, et al.A genetically encoded sensor for H2O2 with expanded dynamic range[J]. Bioorganic & Medicinal Chemistry, 2011, 19(3):1079-1084. [8] Bilan DS, Pase L, Joosen L, et al.HyPer-3:A genetically encoded H2O2 probe with improved performance for ratiometric and fluorescence lifetime imaging[J]. ACS Chemical Biology, 2013, 8(3):535-542. [9] Ermakova YG, Bilan DS, Matlashov ME, et al.Red fluorescent genetically encoded indicator for intracellular hydrogen peroxide[J]. Nature Communications, 2014, 5:5222-5231. [10] Fan Y, Chen Z, Ai H.Monitoring redox dynamics in living cells with a redox-sensitive red fluorescent protein[J]. Analytical Chemistry, 2015, 87(5):2802-2810. [11] Miyawaki A, Llopis J, Heim R, et al.Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin[J]. Nature, 1997, 388(6645):882-887. [12] Nagai T, Sawano A, Park ES, et al.Circularly permuted green fluorescent proteins engineered to sense Ca2+[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(6):3197-3202. [13] Zhao Y, Araki S, Wu J, et al.An expanded palette of genetically encoded Ca2+ indicators[J]. Science, 2011, 333(6051):1888-1891. [14] Helassa N, Podor B, Fine A, et al.Design and mechanistic insight into ultrafast calcium indicators for monitoring intracellular calcium dynamics[J]. Scientific Reports, 2016, 6:38276-38288. [15] Shen Y, Dana H, Abdelfattah AS, et al.A genetically encoded Ca2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578[J]. Bmc Biology, 2018, 16:9. [16] Akerboom J, Calderon NC, Tian L, et al.Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics[J]. Frontiers in Molecular Neuroscience, 2013, 6:2. [17] Carlson HJ, Campbell RE.Circular permutated red fluorescent proteins and calcium ion indicators based on mCherry[J]. Protein Engineering Design & Selection, 2013, 26(12):763-772. [18] Nakai J, Ohkura M, Imoto K.A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein[J]. Nature Biotechnology, 2001, 19(2):137-141. [19] Nagai T, Yamada S, Tominaga T, et al.Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(29):10554-10559. [20] Chen TW, Wardill TJ, Sun Y, et al.Ultrasensitive fluorescent proteins for imaging neuronal activity[J]. Nature, 2013, 499(7458):295-302. [21] Ast C, Foret J, Oltrogge LM, et al.Ratiometric Matryoshka biosensors from a nested cassette of green- and orange-emitting fluorescent proteins[J]. Nature Communications, 2017, 8:431-443. [22] Wang W, Fang H, Groom L, et al.Superoxide flashes in single mitochondria[J]. Cell, 2008, 134(2):279-290. [23] Schwarzlander M, Logan DC, Fricker MD, et al.The circularly permuted yellow fluorescent protein cpYFP that has been used as a superoxide probe is highly responsive to pH but not superoxide in mitochondria:implications for the existence of superoxide ‘flashes’[J]. Biochemical Journal, 2011, 437(3):381-387. [24] Cao Y, Zhang X, Shang W, et al.Proinflammatory cytokines stimulate mitochondrial superoxide flashes in articular chondrocytes in vitro and in situ[J]. PLoS One, 2013, 8(6):e66444. [25] Wei-Lapierre L, Gong G, Gerstner BJ, et al.Respective contribution of mitochondrial superoxide and pH to mitochondria-targeted circularly permuted yellow fluorescent protein(mt-cpYFP)flash activity[J]. J Biol Chem, 2013, 288(15):10567-10577. [26] Zhang X, Huang Z, Hou T, et al.Superoxide constitutes a major signal of mitochondrial superoxide flash[J]. Life Sciences, 2013, 93(4):178-186. [27] Wang W, Zhang H, Cheng H.Mitochondrial flashes:From indicator characterization to in vivo imaging[J]. Methods, 2016, 109:12-20. [28] Schwarzlander M, Wagner S, Ermakova YG, et al.The ‘mitoflash’ probe cpYFP does not respond to superoxide[J]. Nature, 2014, 514(7523):E12-14. [29] Zhao Y, Jin J, Hu Q, et al.Genetically encoded fluorescent sensors for intracellular NADH detection[J]. Cell Metabolism, 2011, 14(4):555-566. [30] Hung YP, Albeck JG, Tantama M, et al.Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor[J]. Cell Metabolism, 2011, 14(4):545-554. [31] Mongeon R, Venkatachalam V, Yellen G.Cytosolic NADH-NAD+ redox visualized in brain slices by two-photon fluorescence lifetime biosensor imaging[J]. Antioxidants & Redox Signaling, 2016, 25(10):553-563. [32] Zhao Y, Hu Q, Cheng F, et al.SoNar, a highly responsive NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents[J]. Cell Metabolism, 2015, 21(5):777-789. [33] Cambronne XA, Stewart ML, Kim D, et al.Biosensor reveals multiple sources for mitochondrial NAD+[J]. Science, 2016, 352(6292):1474-1477. [34] Tao R, Zhao Y, Chu H, et al.Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism[J]. Nature Methods, 2017, 14(7):720-728. [35] Nausch LW, Lecloux J, Bonev AD, et al.Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(1):365-370. [36] Berg J, Hung YP, Yellen G.A genetically encoded fluorescent reporter of ATP:ADP ratio[J]. Nature Methods, 2009, 6(2):161-166. [37] Sakaguchi R, Endoh T, Yamamoto S, et al.A single circularly permuted GFP sensor for inositol-1, 3, 4, 5-tetrakisphosphate based on a split pH domain[J]. Bioorganic & Medicinal Chemistry, 2009, 17(20):7381-7386. [38] Zhao BS, Liang Y, Song Y, et al.A highly selective fluorescent probe for visualization of organic hydroperoxides in living cells[J]. Journal of the American Chemical Society, 2010, 132(48):17065-17067. [39] Marvin JS, Schreiter ER, Echevarria IM, et al.A genetically encoded, high-signal-to-noise maltose sensor[J]. Proteins, 2011, 79(11):3025-3036. [40] Chen S, Chen Z, Ren W, et al.Reaction-based genetically encoded fluorescent hydrogen sulfide Sensors[J]. Journal of the American Chemical Society, 2012, 134(23):9589-9592. [41] Barnett L, Platisa J, Popovic M, et al.A fluorescent, genetically-encoded voltage probe capable of resolving action potentials[J]. PLoS One, 2012, 7(9):e43454. [42] Honda Y, Kirimura K.Generation of circularly permuted fluorescent-protein-based indicators for in vitro and in vivo detection of citrate[J]. PLoS One, 2013, 8(5):e64597. [43] Chen Z, Ren W, Wright QE, et al.Genetically encoded fluorescent probe for the selective detection of peroxynitrite[J]. Journal of the American Chemical Society, 2013, 135(40):14940-14943. [44] Chen Z, Tian Z, Kallio K, et al.The NB interaction through a water bridge:understanding the chemoselectivity of a fluorescent protein based probe for peroxynitrite[J]. Journal of the American Chemical Society, 2016, 138(14):4900-4907. [45] Wohlever ML, Nager AR, Baker TA, et al.Engineering fluorescent protein substrates for the AAA+ Lon protease[J]. Protein Engineering Design and Selection, 2013, 26(4):299-305. [46] Yaginuma H, Kawai S, Tabata KV, et al.Diversity in ATP concentrations in a single bacterial cell population revealed by quantitative single-cell imaging[J]. Scientific Reports, 2014, 4:6522-6529. [47] Tarrago L, Peterfi Z, Lee BC, et al.Monitoring methionine sulfoxide with stereospecific mechanism-based fluorescent sensors[J]. Nature Chemical Biology, 2015, 11(5):332-338. [48] Wang Y, Zhang H, Zhang Q, et al.Genetically encoded fluorescence screening probe for MgrA, a global regulator in Staphylococcus aureus[J]. RSC Advances, 2015, 5(106):87216-87220. [49] Bianchi-smiraglia A, Rana MS, Foley CE, et al. Internally ratiometric fluorescent sensors for evaluation of intracellular GTP levels and distribution[J]. Nature Methods, 2017, 14(10):1003-1009. [50] Zhu R, Hao Z, Lou H, et al.Structural and mechanistic study of the cysteine oxidation-mediated induction of the Escherichia coli MarR regulator[J]. Tetrahedron, 2017, 73(26):3714-3719. [51] Hu H, Gu Y, Xu L, et al.A genetically encoded toolkit for tracking live-cell histidine dynamics in space and time[J]. Scientific Reports, 2017, 7:43479-43488. [52] Mayevsky A, Rogatsky GG.Mitochondrial function in vivo evaluated by NADH fluorescence:from animal models to human studies[J]. American Journal of Physiology-Cell Physiology, 2007, 292(2):C615-C640. [53] Blacker TS, Mann ZF, Gale JE, et al.Separating NADH and NADPH fluorescence in live cells and tissues using FLIM[J]. Nature Communications, 2014, 5:3936-3945. [54] Tejwani V, Schmitt FJ, Wilkening S, et al.Investigation of the NADH/NAD+ ratio in Ralstonia eutropha using the fluorescence reporter protein Peredox[J]. Biochimica et Biophysica Acta, 2017, 1858(1):86-94. [55] Wilkening S, Schmitt FJ, Horch M, et al.Characterization of Frex as an NADH sensor for in vivo applications in the presence of NAD+ and at various pH values[J]. Photosynthesis Research, 2017, 133(1-3):305-315. [56] Chang M, Li L, Hu H, et al.Using fractional intensities of time-resolved fluorescence to sensitively quantify NADH/NAD+ with genetically encoded fluorescent biosensors[J]. Scientific Reports, 2017, 7:4209-4218. [57] Masia R, Mccarty WJ, Lahmann C, et al.Live cell imaging of cytosolic NADH/NAD+ ratio in hepatocytes and liver slices[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2018, 314(1):G97-G108. [58] Pandey N, Kuypers BE, Nassif B, et al.Tolerance of a knotted near-Infrared fluorescent protein to random circular permutation[J]. Biochemistry, 2016, 55(27):3763-3773. [59] Wongso D, Dong J, Ueda H, et al.Flashbody:A next generation fluobody with fluorescence intensity enhanced by antigen binding[J]. Analytical Chemistry, 2017, 89(12):6719-6725. |
[1] | XUE Ning, WANG Jin, LI Shi-xin, LIU Ye, CHENG Hai-jiao, ZHANG Yue, MAO Yu-feng, WANG Meng. Construction of L-phenylalanine High-producing Corynebacterium glutamicum Engineered Strains via Multi-gene Simultaneous Regulation Combined with High-throughput Screening [J]. Biotechnology Bulletin, 2023, 39(9): 268-280. |
[2] | LI Ren-han, ZHANG Le-le, LIU Chun-li, LIU Xiu-xia, BAI Zhong-hu, YANG Yan-kun, LI Ye. Development of an L-tryptophan Biosensor Based on the Violacein Biosynthesis Pathway [J]. Biotechnology Bulletin, 2023, 39(10): 80-92. |
[3] | CHEN Xiao-lin, LIU Yang-er, XU Wen-tao, GUO Ming-zhang, LIU Hui-lin. Application of Synthetic Biology Based Whole-cell Biosensor Technology in the Rapid Detection of Food Safety [J]. Biotechnology Bulletin, 2023, 39(1): 137-149. |
[4] | WANG Peng-fei, YANG Min, ZHU Long-jiao, XU Wen-tao. Advances in Biosensors Based on Platinum Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(12): 235-242. |
[5] | ZHAO Ying, WANG Nan, LU An-xiang, FENG Xiao-yuan, GUO Xiao-jun, LUAN Yun-xia. Application in the Detection of Fungal Toxins by Nucleic Acid Aptamer Lateral Flow Chromatography Analysis Technique [J]. Biotechnology Bulletin, 2020, 36(8): 217-227. |
[6] | FANG Shun-yan, SONG Dan, LIU Yan-ping, XU Wen-juan, LIU Jia-yao, HAN Xiang-zhi, LONG Feng. Study on Evanescent Wave Fluorescence Aptasensor for Direct and Rapid Detection of Escherichia coli O157∶H7 [J]. Biotechnology Bulletin, 2020, 36(7): 228-234. |
[7] | YE Jian-wen, CHEN Jiang-nan, ZHANG Xu, Wu Fu-qing, CHEN Guo-qiang. Dynamic Control:An Efficient Strategy for Metabolically Engineering Microbial Cell Factories [J]. Biotechnology Bulletin, 2020, 36(6): 1-12. |
[8] | YANG Min, LI Shu-ting, YANG Wen-ping, LI Xiang-yang, XU Wen-tao. Research Progress on Functional Nucleic Acid Biosensors Mediated by DNA/Silver Nanoclusters [J]. Biotechnology Bulletin, 2020, 36(6): 245-254. |
[9] | LIU Su-yue, TIAN Jing-jing, TIAN Hong-tao, XU Wen-tao. Terbium(III)and Its Complexes:from Luminescent Properties to Sensing and Bioimaging Applications [J]. Biotechnology Bulletin, 2020, 36(4): 192-207. |
[10] | SUN Yu-ge, LI Chen-wei, DU Zai-hui, XU Wen-tao. Research Progress on FEN1-mediated Functional Nucleic Acid Biosensors [J]. Biotechnology Bulletin, 2020, 36(4): 208-224. |
[11] | WU Ya, XU Zhi-hui, ZHANG Biao, ZHAO Dong-fang, CAO Wen-xin, ZHANG Xing-ping. Research Progress of Nucleic Acid Aptamer Optical Biosensor in Kanamycin Detection [J]. Biotechnology Bulletin, 2020, 36(1): 193-201. |
[12] | XIAO Bing, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, XU Wen-tao. Research Progress in the Quantitative and Unitive Detecting Technologies Based on Functional Nucleic Acid and Labeled Fluorescence [J]. Biotechnology Bulletin, 2019, 35(7): 213-221. |
[13] | XIE Yin-xia, WANG Wei-ran, CHENG Nan, XU Wen-tao. Research Progress on Electrical Signal Molecules in Electrochemical Functional Nucleic Acids Biosensors [J]. Biotechnology Bulletin, 2019, 35(5): 157-169. |
[14] | XIAO Bing, LIU Bang, LUO Yun-bo, HUANG Kun-lun, ZHANG Yuan, LI Xia-ying, ZHANG Xiu-jie, XU Wen-tao, ZHOU Xiang. Research Progress in Quantitative and Unitive Detecting Technologies of Functional Nucleic Acid and Label-Free Fluorescence [J]. Biotechnology Bulletin, 2019, 35(3): 194-202. |
[15] | LI Chen-wei, DU Zai-hui, LIN Shao-hua, LUO Yun-bo, XU Wen-tao. Research Progress on Functional Nucleic Acids for Detecting Pb2+ [J]. Biotechnology Bulletin, 2019, 35(1): 131-139. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||