Biotechnology Bulletin ›› 2019, Vol. 35 ›› Issue (12): 159-168.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0481
• Orginal Article • Previous Articles Next Articles
ZHANG Wen-jun, WU Meng-ting, LÜ Chun-yan, WANG Qing, CHEN Yong-lin
Received:
2019-05-30
Online:
2019-12-26
Published:
2019-12-03
ZHANG Wen-jun, WU Meng-ting, LÜ Chun-yan, WANG Qing, CHEN Yong-lin. Research Progress on Mesoporous Silica in Drug Delivery System and in vitro/in vivo[J]. Biotechnology Bulletin, 2019, 35(12): 159-168.
[1] Singh Y, Meher JG, Raval K, et al.Nanoemulsion:concepts, development and applications in drug delivery[J]. Journal of Controlled, 2017, 252(5):28-49. [2] Janjic JM, Vasudeva K, Saleem M, et al.Low-dose NSAIDs reduce pain via macrophage targeted nanoemulsion delivery to neuroinflammation of the sciatic nerve in rat[J]. Journal of Neuroimmunology, 2018, 318:72-79. [3] Chen CT, Duan ZQ, Yuan Y, et al.Peptide-22 and Cyclic RGD functionalized liposomes for glioma targeting drug delivery overco-ming BBB and BBTB[J]. ACS Appl Mater Inter, 2017, 9(7):5864-5873. [4] Yin XL, Feng SS, Chi YY, et al.Estrogen-functionalizaed liposomes grafted with glutathione-respnsive sheddable chotooligosaccharides for the therapy of osteosarcoma[J]. Drug Delivery, 2018, 25(1):900-908. [5] Vrbata D, Uchman M.Preparation of lactic acid- and glucose-responsive poly(ε-caprolactone)-b-Poly(ethylene oxide)block copolymer micelles using phenylboronic ester as a sensitive block linkage[J]. Nanoscale, 2018, 10(18):8428-8442. [6] Liu LL, He HM, Liang RJ, et al.ROS-Inducing micelles sensitize tumor-associated macrophages to TLR3 stimulation for potent immunotherapy[J]. Biomacromolecules, 2018, 6:2146-2155. [7] Zhou YX, Quan GL, Wu QL, et al.Mesoporous silica nanoparticles for drug and gene delivery[J]. Acta Pharmaceutica Sinica B, 2018, 8(2):165-177. [8] Lee JE, Lee N, Kim T, et al.Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications[J]. Acc Chem Res, 2011, 44(10):893-902. [9] Meng H, Liong M, Xia T, et al.Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line[J]. Acs Nano, 2010, 4:4539-4550. [10] Lee AL, Gee CT, Weegman BP, et al.Oxygen sensing with perfluorocarbon-loaded ultraporous mesostructured silica na-noparticles[J]. Acs Nano, 2017, 11:5623-5632. [11] Wu SH, Hung Y, Mou CY.Mesoporous silica nanoparticles as nanocarriers[J]. Chemical Communications, 2011, 47(36):9972-9985. [12] Jia ZR, Lin P, Xiang Y, et al.A novel nanomatrix system consisted of colloidal silica and pH-sensitive polymethylacrylate improves the oral bioavailability of fenofibrate[J]. Eur J Pharm Biopharm, 2011, 79:126 34. [13] Hu YC, Zhi ZZ, Wang TY, et al.Incorporation of indomethacin nanoparticles into 3-D ordered macroporous silica for enhanced dissolution and reduced gastric irritancy[J]. Eur J Pharm Biopharm, 2011, 79:544-551. [14] Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, et al.Melting/freezing behavior of a fluid confined in porous glasses and MCM-41:dielectric spectroscopy and molecular simulation[J]. J Chem Phys, 2001, 114:950-962. [15] He YJ, Liang SQ, Long MQ, et al.Mesoporous silica nanoparticles as potential carriers for enhanced drug solubility of paclitaxel[J]. Mater Sci Eng C, 2017;78:12-17. [16] Tzankov B, Voycheva C, Aluani D, et al.Improvement of dissolution of poorly soluble glimepiride by loading on two types of mesoporous silica carriers[J]. J Solid State Chem, 2010, 271:253-259. [17] Meka A, Jenkins L, Dàvalos-Salas M, et al.Enhanced solubility, permeability and anticancer activity of vorinostat using tailored mesoporous silica nanoparticles[J]. Pharmaceutics, 2018, 10(4):283. [18] Li ZY, Hu JJ, Xu Q, et al.A redox-responsive drug delivery system based on RGD containing peptide-capped mesoporous silica nanoparticles[J]. J Mater Chem B, 2015, 3(1):39-44. [19] Ma M, Chen HR, Chen Y, et al.Hyaluronic acid-conjugated mesoporous silica nanoparticles:excellent colloidal dispersity in physiological fluids and targeting efficacy[J]. J Mater Chem, 2012, 22:5615-5621. [20] 姚琳通, 刘娅婷, 刘雅静, 等. 介孔二氧化硅在肿瘤治疗领域的研究进展[J]. 生物技术通报, 2019, 35(2):182-191. [21] Tao W, Zeng XW, Wu J, et al.Polydopamine-based surface modification of novel nanoparticle-aptamer bioconjugates for in vivo breast cancer targeting and enhanced therapeutic effects[J]. Theranostics, 2016, 6(4):470-484. [22] Zhang J, Sun Y, Tian B, et al.Multifunctional mesoporous silica nanoparticles modified with tumor-shedable hyaluronic acid as carriers for doxorubicin[J]. Colloids and Surfaces B:Biointerfaces, 2016, 144:293-302. [23] Wei Y, Gao L, Wang L, et al.Polydopamine and peptide decorated doxorubicin-loaded mesoporous silica nanoparticles as a targeted drug delivery system for bladder cancer therapy[J]. Drug Deliv, 2017, 24(1):681-691. [24] Mandal T, Beck M, Kirsten N, et al.Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles[J]. Sci Rep, 2018, 8:989. [25] Zhao Y, Jiang Y, Lv W, et al.Dual Targeted Nanocarrier for Brain Ischemic Stroke Treatment[J]. J Control Release, 2016, 233:64-71. [26] López V, Villegas MR, Rodríguez V, et al.Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria[J]. ACS Appl. Mater. Interfaces, 2017, 9(32):26697-26706. [27] Avedian N, Zaaeri F, Daryasari MP, et al.pH-sensitive biocompatible mesoporous magnetic nanoparticles labeled with folic acid as an efficient carrier for controlled anticancer drug delivery[J]. J Drug Delivery Sci Technol, 2018, 44:323-332. [28] Brunella V, Jadhav SA, Miletto I, et al.Hybrid drug carriers with temperature-controlled on-off release:a simple and reliable synthesis of PNIPAM-functionalized mesoporous silica nanoparticles[J]. React Funct Polym, 2016, 98:31-37. [29] Castillo RR, Lozano D, González B, et al.Advances in mesoporous silica nanoparticles for targeted stimuli-responsive drug delivery:an update[J]. Expert Opin Drug Deliv, 2019, 16(4):415-439. [30] Song YH, Li YH, Xu Q, et al.Mesoporous silica nanoparticles for stimuliresponsive controlled drug delivery:advances, challenges, and outlook[J]. Int J Nanomed, 2017, 12:87-110. [31] Zhao TC, Chen L, Li Q, et al.Near-infrared light triggered drug release from mesoporous silica nanoparticles[J]. J Mater Chem B, 2018, 44:7112-7121. [32] Chen L, Wang W, Su B, et al.A light-responsive release platform by controlling the wetting behavior of hydrophobic surface[J]. ACS Nano, 2014, 8(1):744-751. [33] Li H, Tan LL, Jia P, et al.Near-infrared light-responsive supramolecular nanovalve based on mesoporous silica-coated gold nanorods[J]. Chemical Science, 2014, 5(7):2804-2808. [34] Chang DF, Gao YF, Wang LJ, et al.Polydopamine-based surface modification of mesoporous silica nanoparticles as pH-sensitive drug delivery vehicles for cancer therapy[J]. J Colloid Interface Sci, 2016, 463:279-287. [35] Wang Y, Han N, Zhao QF, et al.Redox-responsive mesoporous silica as carriers for controlled drug delivery:A comparative study based on silica and PEG gatekeepers[J]. Eur J Pharm Sci, 2015, 72:12-20. [36] Rijt SHV, Bolukbas DA, Argyo C, et al.Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors[J]. ACS Nano, 2015, 9(3):2377-2389. [37] Paris JL., Cabañas MV, Manzano M, et al. Polymer-grafted mesoporous silica nanoparticles as ultrasound-responsive drug carriers[J]. ACS Nano, 2015, 9(11):11023-11033. [38] Kim MH, Na HK, Kim YK, et al.Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery[J]. ACS Nano, 2011, 5:3568-3576. [39] Kesse S, Boakye-Yiadom K, Ochete B, et al.Mesoporous silica nanomaterials:versatile nanocarriers for cancer theranostics and drug and gene delivery[J]. Pharmaceutics, 2019, 11(2):77-102. [40] Li YJ, Hei MY, Xu YF, et al.Ammonium salt modified mesoporous silica nanoparticles for dual intracellular-responsive gene delivery[J]. Int J Pharm, 2016, 511(2):689-702. [41] Wang MQ, Li X, Ma YJ, et al.Endosomal escape kinetics of mesoporous silica-based system for efficient siRNA delivery[J]. Int J Pharm 2013, 448:51-57. [42] Xia T, Kovochich M, Liong M, et al.Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs[J]. ACS Nano, 2009, 3:3273-3286. [43] Hartono SB, Gu W, Kleitz F, et al.Poly- L -lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery[J]. ACS Nano, 2012, 6:2104-2117. [44] Lin JT, Liu ZK, Zhu QL, et al.Redox-responsive nanocarriers for drug and gene co-delivery based on chitosan derivatives modified mesoporous silica nanoparticles[J]. Colloids and Surfaces B:Biointerfaces, 2017, 155:41-50. [45] Zarei H, Kazemi Oskuee R, Hanafi-Bojd MY, et al.Enhanced gene delivery by polyethyleneimine coated mesoporous silica nanoparticles[J]. Pharm Dev Technol, 2019, 24(1):127-132. [46] Zheng N, Li J, Xu C, et al.Mesoporous silica nanorods for improved oral drug absorption[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46(6):1132-1140. [47] Fu CH, Liu TL, Li LL, et al.The absorption, distribution, excretion and toxicity of mesoporous silica nanoparticles in mice following different exposure routes[J]. Biomaterials, 2013, 34(10):2565-2575. [48] He QJ, Zhang ZW, Gao F, et al.In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles:effects of particle size and PEGylation[J]. Small, 2010, 7(2):271-280. [49] Cong VT, Gaus K, Tilley RD, et al.Rod-shaped mesoporous silica nanoparticles for nanomedicine:recent progress and perspectives[J]. Expert Opin Drug Deliv, 2018, 15(9):881-892. [50] Huang X, Li L, Liu T, et al.The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo[J]. ACS Nano, 2011, 5(7):5390-5399. [51] Nairi V, Medda S, Piludu M, et al.Interactions between bovine serum albumin and mesoporous silica nanoparticles functionalized with biopolymers[J]. Chem Eng J, 2018, 340:42-50. [52] Fonseca LC, de Araújo MM, de Moraes ACM, et al. Nanocomposites based on graphene oxide and mesoporous silica nanoparticles:preparation, characterization and nanobiointeractions with red blood cells and human plasma proteins[J]. Applied Surface Science, 2018, 437:110-121. [53] Croissant JG, Fatieiev Y, Almalik A, et al.Mesoporous silica and organosilica nanoparticles:physical chemistry, biosafety, delivery strategies, and biomedical applications[J]. Advanced Healthcare Materials, 2017, 7(4):1700831. [54] Lindén M.Biodistribution and excretion of intravenously injected mesoporous silica nanoparticles:implications for drug delivery efficiency and safety[J]. the enzymes, 2018, 43:80-155. [55] Li LL, Liu TL, Fu CH, et al.Biodistribution, excretion, and toxicity of mesoporous silica nanoparticles after oral administration depend on their shape[J]. Nanomedicine, 2015, 11(8):1915-1924. [56] Cho M, Cho WS, Choi M, et al.The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles[J]. Toxicology Letters, 2009, 189(3):177-183. [57] Zhao YT, Wang Y, Ran F, et al.A comparison between sphere and rod nanoparticles regarding their in vivo biological behavior and pharmacokinetics[J]. Sci Rep, 2017, 7(1):4131-4142. [58] Lee JA., Kim MK, Paek HJ, et al. Tissue distribution and excretion kinetics of orally administered silica nanoparticles in rats[J]. International Journal of Nanomedicine, 2014, 9(2):251-260. [59] Greish K, Thiagarajan G, Herd H, et al.Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles[J]. Nanotoxicology, 2012, 6(7):713-723. [60] Ye YY, Liu JW, Chen MC, et al.In vitro toxicity of silica nanoparticles in myocardial cells[J]. Environmental Toxicology and Pharmacology, 2010, 29(2):131-137. [61] Yu T, Malugin A, Ghandehari H.Impact of silica nanoparticle design on cellular toxicity and hemolytic activity[J]. ACS Nano, 2011, 5(7):5717-5728. [62] Shao D, Lu MM, Zhao YW, et al.The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution[J]. Acta Biomaterialia, 2017, 49:531-540. [63] Li H, Wu XQ, Yang BX, et al.Evaluation of biomimetically synthesized mesoporous silica nanoparticles as drug carriers:structure, wettability, degradation, biocompatibility and brain distribution[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94:453-464. [64] Pisani C, Rascol E, Dorandeu C, et al.Biocompatibility assessment of functionalized magnetic mesoporous silica nanoparticles in human HepaRG cells[J]. Nanotoxicology, 2017, 11(7):871-890. [65] Kim IY, Joachim E, Choi H, et al.Toxicity of silica nanoparticles depends on size, dose, and cell type[J]. Nanomedicine, 2015, 11(6):1407-1416. [66] Chen Y, Chen HR, Shi JL.In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles[J]. Advanced Materials, 2013, 25(23):3144-3176. [67] Tamarov K, Näkki S, Xu W, et al.Approaches to improve the biocompatibility and systemic circulation of inorganic porous nanoparticles[J]. J Mater Chem B, 2018, 6(22):3632-3649. [68] He QJ, Zhang JM, Shi JL, et al.The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses[J]. Biomaterials, 2010, 31(6):1085-1092. [69] Lehman SE, Morris AS, Mueller PS, et al.Silica nanoparticle-generated ROS as a predictor of cellular toxicity:mechanistic insights and safety by design[J]. Environmental Science:Nano, 2016, 3(1):56-66. [70] Shi Y, Miller ML, Di Pasqua AJ.Biocompatibility of Mesoporous Silica Nanoparticles?[J]. Comments on Inorganic Chemistry, 2015, 36(2):61-80. [71] Passagne I, Morille M, Rousset M, et al.Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells[J]. Toxicology, 2012, 299(2-3):112-124. [72] Morishige T, Yoshioka Y, Inakura H, et al.The effect of surface modification of amorphous silica particles on NLRP3 inflammasome mediated IL-1β production, ROS production and endosomal rupture[J]. Biomaterials, 2010, 31(26):6833-6842. [73] Sergent J, Paget V, Chevillard S.Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line[J]. Ann Occup Hyg, 2012, 56(5):622-630. [74] Zhang QN, Xu HF, Zheng SQ, et al.Genotoxicity of mesoporous silica nanoparticles in human embryonic kidney 293 cells[J]. Drug Test Anal, 2015, 7(9):787-796. [75] 李舒婷, 贺万崇, 黄昆仑, 等. 介孔二氧化硅介导的功能核酸检测技术研究进展[J]. 生物技术通报, 2018, 34(9):139-148. [76] Downs TR, Crosby ME, Hu T, et al.Silica nanoparticles administered at the maximum tolerated dose induce genotoxic effects through an inflammatory reaction while gold nanoparticles do not[J]. Mutat Res, 2012, 745(1-2):38-50. [77] Pinto SR, Helal-Neto E, Paumgartten F, et al.Cytotoxicity, genotoxicity, transplacental transfer and tissue disposition in pregnant rats mediated by nanoparticles:the case of magnetic core mesoporous silica nanoparticles[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2018, 46:527-538. |
[1] | LU Xin-hua, SUN De-quan, ZHANG Xiu-mei. Genetic Transformation of Plant Cells Mediated by Mesoporous Silica Nanoparticles [J]. Biotechnology Bulletin, 2022, 38(7): 194-204. |
[2] | SUN De-quan, LU Xin-hua, LI Wei-ming, HU Yu-lin, DUAN Ya-jie, PANG Zhen-cai, HU Hui-gang. Application of Mesoporous Silica Nanoparticles in Agriculture [J]. Biotechnology Bulletin, 2022, 38(5): 228-239. |
[3] | GONG Xiao-hui, YANG Min, LI Shu-ting, LIN Sheng-hao, XU Wen-tao. Progress on Antibacterial Mechanism,Activity and Application of Silver Nanoclusters [J]. Biotechnology Bulletin, 2021, 37(5): 212-220. |
[4] | HUANG Kai, ZHANG Hong-yu, ZHANG Han-qian, LI Yuan, ZU Yan-qun, CHEN Jian-jun. Research Progress on the Molecular Mechanism of Plants Response to Aluminum Toxicity [J]. Biotechnology Bulletin, 2021, 37(3): 125-135. |
[5] | WU Pei, LI Hao, ZAO Hao-long, WANG Yu-yun, YANG Jian-li, TANG Li, FAN Wei. Physiological and Molecular Mechanisms of Plant Co-evolution Responses to Phosphorous Deficiency and Aluminum Toxicity [J]. Biotechnology Bulletin, 2020, 36(7): 170-181. |
[6] | YANG Yue, GAO Jun-ru, YANG Liu. Research Progress on CRISPR Technology in Biology and Medical Science [J]. Biotechnology Bulletin, 2020, 36(3): 38-44. |
[7] | WU Ting-ting, GUI Zhe, QIN Ying-qiu, XIE Zhi-xiong. σ Factor SigW/ Anti-σ Factor Involving in the Toxicity of Pseudomonas donghuensis HYS to Caenorhabditis elegans [J]. Biotechnology Bulletin, 2020, 36(10): 142-149. |
[8] | WANG Ya-nan, WEN Hai-ruo, WANG Xue. Establishment and Preliminary Exploration of in vitro Pig-a Gene Mutation Assay Based on L5178Y Cells [J]. Biotechnology Bulletin, 2020, 36(1): 220-228. |
[9] | YUE Xin, YANG Ai-jiang, XU Peng, HU Xia, ZHU Huan-yi, BAO Xin. Effect of Antimony on the Enzyme Activity of Danio rerio [J]. Biotechnology Bulletin, 2019, 35(6): 99-106. |
[10] | YAO Lin-tong, LIU Ya-ting, LIU Ya-jing, CHEN Zhen-zhen. Research Progress on Mesoporous Silica in Cancer Therapy [J]. Biotechnology Bulletin, 2019, 35(2): 182-191. |
[11] | LIN Sheng-hong, PAN Xiao-mei, SHI Xiao-ling, IHSAN Ali, LIU Zhen-fei, YU Shuang, ZHANG Jin-feng, NIU Zhen-feng, TIAN Yong-qiang. Screening and Identification of Soil Mycelial Pellets and Application of Immobilized Mycelium [J]. Biotechnology Bulletin, 2019, 35(1): 76-81. |
[12] | LI Shu-ting, HE Wan-chong, HUANG Kun-lun, XU Wen-tao. Research Progress on Mesoporous Silica Mediated Functional Nucleic Acids-based Detection Technologies [J]. Biotechnology Bulletin, 2018, 34(9): 139-148. |
[13] | LIANG Li-qin, YAN Jing, ZHANG Xin, HAO Ze-ting, DUAN Jiang-yan. Research Progresses on the Development and Application of CRISPR Technology [J]. Biotechnology Bulletin, 2018, 34(5): 9-16. |
[14] | REN Ya-lin, LI Yun, WU Jing. Combined Hepatotoxicity Assessment of Mycotoxins AFB1 and Zearalenone on Hepatocellular Carcinoma Cells HepG2 in vitro and Its Mechanisms [J]. Biotechnology Bulletin, 2018, 34(11): 160-167. |
[15] | LÜ Peng, XU Jia-qing, WANG Sen, YAN Yan-chun. Studies on Acute Toxicity and Oxidative Stress of Benzisothiazolin to Danio rerio Embryos [J]. Biotechnology Bulletin, 2018, 34(1): 172-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||