Biotechnology Bulletin ›› 2021, Vol. 37 ›› Issue (12): 29-40.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0190
Previous Articles Next Articles
LV Yan1(), WANG Wen-bin2, GOU Qi1, WANG Ying-na1, LI Jing-yu1, LIU Jian-li1()
Received:
2021-02-19
Online:
2021-12-26
Published:
2022-01-19
Contact:
LIU Jian-li
E-mail:lvyan0205@163.com;ljl7523@126.com
LV Yan, WANG Wen-bin, GOU Qi, WANG Ying-na, LI Jing-yu, LIU Jian-li. Effect of Root Rot on Arbuscular Mycorrhizal Fungi Community in Root Zone Soil of Lycium barbarum L.[J]. Biotechnology Bulletin, 2021, 37(12): 29-40.
土壤理化性质 Soil physicochemical properties | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | ||||
有机质OM/(g·kg-1) | 12.82±0.64b | 20.18±0.98a | 12.83±2.07a | 12.12±1.1a | 11.42±0.94a | 11.92±1.52a | |||
全磷TP/(g·kg-1) | 0.7±0.07 a | 0.96±0.37a | 1.33±0.35a | 1.25±0.32a | 0.95±0.12a | 0.54±0.29a | |||
硝态氮/NO3--N(mg·kg-1) | 6.06±0.84a | 4.58±0.39b | 6.71±0.13a | 4.82±0.43b | 4.95±0.29b | 6.9±0.05a | |||
氨态氮/NH4+-N(mg·kg-1) | 0.41±0.07a | 0.23±0.17a | 0.39±0.12a | 0.53±0.03a | 0.41±0.32 a | 0.32±0.16a | |||
全氮TN/(g·kg-1) | 1.29±0.2 a | 1.56±0.32 a | 1.05±0.17 a | 1.36±0.05 a | 1.09±0.12 a | 1.26±0.09 a | |||
全钾TK/(g·kg-1) | 2.72±0.05 a | 2.55±0.09 a | 2.15±0.51 a | 2.45±0.26 a | 2.65±0.16b | 3.94±0.26a | |||
速效钾AK/(mg·kg-1) | 144.08±5.71a | 107.96±10a | 114.43±18.84a | 155.02±55.15a | 145.06±6.98a | 136.47±2.62 a | |||
速效磷AP/(mg·kg-1) | 7.29±2.24a | 6.75±1.64a | 6.22±1.43a | 7.25±1.39a | 4.56±2.71a | 2.98±0.54a | |||
pH | 7.78±0.09a | 7.68±0.18a | 7.59±0.04b | 7.9±0.08a | 8.04±0.22a | 8.24±0.1a |
Table 1 Physicochemical properties of soil around healthy and root rot-infected L. barbarum L. plants from different cultivated sites
土壤理化性质 Soil physicochemical properties | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | 健康树 Healthy tree | 病树 Root rot-infected tree | ||||
有机质OM/(g·kg-1) | 12.82±0.64b | 20.18±0.98a | 12.83±2.07a | 12.12±1.1a | 11.42±0.94a | 11.92±1.52a | |||
全磷TP/(g·kg-1) | 0.7±0.07 a | 0.96±0.37a | 1.33±0.35a | 1.25±0.32a | 0.95±0.12a | 0.54±0.29a | |||
硝态氮/NO3--N(mg·kg-1) | 6.06±0.84a | 4.58±0.39b | 6.71±0.13a | 4.82±0.43b | 4.95±0.29b | 6.9±0.05a | |||
氨态氮/NH4+-N(mg·kg-1) | 0.41±0.07a | 0.23±0.17a | 0.39±0.12a | 0.53±0.03a | 0.41±0.32 a | 0.32±0.16a | |||
全氮TN/(g·kg-1) | 1.29±0.2 a | 1.56±0.32 a | 1.05±0.17 a | 1.36±0.05 a | 1.09±0.12 a | 1.26±0.09 a | |||
全钾TK/(g·kg-1) | 2.72±0.05 a | 2.55±0.09 a | 2.15±0.51 a | 2.45±0.26 a | 2.65±0.16b | 3.94±0.26a | |||
速效钾AK/(mg·kg-1) | 144.08±5.71a | 107.96±10a | 114.43±18.84a | 155.02±55.15a | 145.06±6.98a | 136.47±2.62 a | |||
速效磷AP/(mg·kg-1) | 7.29±2.24a | 6.75±1.64a | 6.22±1.43a | 7.25±1.39a | 4.56±2.71a | 2.98±0.54a | |||
pH | 7.78±0.09a | 7.68±0.18a | 7.59±0.04b | 7.9±0.08a | 8.04±0.22a | 8.24±0.1a |
样地 Sites | 孢子密度 Spore density/(Spores·g-1)soil | 总侵染率 Total colonization rate/% | 易提取球囊霉素 EEG/(mg·g-1) | 总球囊霉素 TG/(mg·g-1) | |
---|---|---|---|---|---|
银川 Yinchuan | 健康树 Healthy tree | 9.77±0.40a | 2.50±1.21a | 20.71±4.98a | 57.16±10.33a |
病树 Root rot-infected tree | 9.70±1.67a | 7.72±4.03a | 29.37±5.03a | 70.50±2.37a | |
中宁 Zhongning | 健康树 Healthy tree | 34.90±11.47a | 10.27±7.69a | 18.09±2.77b | 61.74±7.26a |
病树 Root rot-infected tree | 36.40±12.25a | 17.85±9.80a | 24.42±2.75a | 67.65±5.48a | |
靖远 Jingyuan | 健康树 Healthy tree | 36.30±13.13a | 30.00±3.27a | 12.54±1.46a | 50.50±6.98a |
病树 Root rot-infected tree | 42.67±10.16a | 33.23±1.00a | 22.42±8.11a | 55.76±15.49a |
Table 2 AMF spore density,infection rate and glomalin content in the soil of healthy and root rot plants of L. barbarum L. from different cultivated sites
样地 Sites | 孢子密度 Spore density/(Spores·g-1)soil | 总侵染率 Total colonization rate/% | 易提取球囊霉素 EEG/(mg·g-1) | 总球囊霉素 TG/(mg·g-1) | |
---|---|---|---|---|---|
银川 Yinchuan | 健康树 Healthy tree | 9.77±0.40a | 2.50±1.21a | 20.71±4.98a | 57.16±10.33a |
病树 Root rot-infected tree | 9.70±1.67a | 7.72±4.03a | 29.37±5.03a | 70.50±2.37a | |
中宁 Zhongning | 健康树 Healthy tree | 34.90±11.47a | 10.27±7.69a | 18.09±2.77b | 61.74±7.26a |
病树 Root rot-infected tree | 36.40±12.25a | 17.85±9.80a | 24.42±2.75a | 67.65±5.48a | |
靖远 Jingyuan | 健康树 Healthy tree | 36.30±13.13a | 30.00±3.27a | 12.54±1.46a | 50.50±6.98a |
病树 Root rot-infected tree | 42.67±10.16a | 33.23±1.00a | 22.42±8.11a | 55.76±15.49a |
属 Genus | 种 Species | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | |||||
无梗囊霉属 Acaulospora | 双网无梗囊霉A. bireticulata | 37.16±3.61 | 34.58±1.59 | - | 16.83±0.57 | 34.89±1.94 | 34.19±1.09 | |||
椒红无梗囊霉A. capsicula | 17.46±1.67 | 52.9±1.66 | - | 16.67±0.29 | 51.77±0.69 | 52.47±0.18 | ||||
凹坑无梗囊霉A. excavate | 51.41±0.47 | - | 0.61±0.53 | 33.97±0.85 | 51.64±0.31 | 57.75±0.51 | ||||
浅窝无梗囊霉A. lacunosa | - | - | 0.29±0.51 | 33.87±0.79 | - | - | ||||
光壁无梗囊霉A. laevis | 16.83±0.58 | 34.05±1.21 | 10.83±4.31 | 56.93±1.00 | 34.22±1.30 | - | ||||
蜜色无梗囊霉A. mellea | 52.49±2.12 | 51.84±0.91 | 5.28±0.83 | - | 16.61±0.19 | 16.59±0.15 | ||||
皱襞无梗囊霉A. rugosa | 33.54±0.49 | - | 4.13±4.66 | 52.59±1.41 | 34.76±2.18 | - | ||||
细凹无梗囊霉A. scrobiculata | - | 54.48±2.43 | - | - | 55.39±1.32 | 61.01±0.41 | ||||
孢果无梗囊霉A. sporocarpia | 16.72±0.37 | - | 0.15±0.26 | - | - | 33.3±0.32 | ||||
近明球囊霉属 Claroideoglomus | 近明球囊霉C. claroideum | - | - | 0.29±0.51 | 35.11±1.83 | - | - | |||
待霄草近明球囊霉C. drummondii | - | - | - | 16.59±0.15 | - | - | ||||
层状近明球囊霉C. lamellosum | - | - | 0.6±0.52 | 33.44±0.40 | 16.61±0.19 | - | ||||
纯黄近明球囊霉C. luteum | - | - | 2.91±3.25 | 34.67±1.46 | 16.62±0.21 | - | ||||
球囊霉属 Glomus | 卷曲球囊霉G. convolutum | - | 34.57±1.56 | 2.09±2.02 | 51.36±0.77 | - | - | |||
团集球囊霉G. glomerulatum | - | - | 0.15±0.26 | 16.67±0.30 | - | - | ||||
海得拉巴球囊霉G. hyderabadensis | - | 16.9±0.69 | - | - | - | - | ||||
大果球囊霉G. macrocarpum | 17.15±1.12 | 33.66±0.60 | 6.19±1.61 | - | 58.09±1.46 | 54.93±0.40 | ||||
宽柄球囊霉G. magnicaule | - | - | 0.15±0.26 | - | - | - | ||||
黑球囊霉G. melanosporum | 57.42±2.28 | 54.87±1.12 | 11.51±2.48 | 54.51±2.26 | 56.16±1.66 | 54.5±0.19 | ||||
多梗球囊霉G. multicaule | 33.65±0.57 | 52.63±0.43 | - | - | 16.61±0.19 | - | ||||
具疱球囊霉G. pustulatum | - | - | 1.68±2.17 | - | - | - | ||||
网状球囊霉G. reticulatum | 59.15±3.05 | 52.5±1.40 | 1.98±1.49 | 16.68±0.31 | 55.36±1.31 | 54.44±1.03 | ||||
G. sp1 | - | - | - | - | 52.7±0.19 | - | ||||
G. sp2 | 52.37±2.12 | - | - | - | - | - | ||||
G. sp3 | - | - | - | - | 55.26±1.33 | 53.67±1.42 | ||||
扭形球囊霉G. tortuosum | - | 56.58±0.97 | 1.68±2.53 | - | - | - | ||||
地表球囊霉G. versiforme | 67.25±4.38 | 64.72±2.28 | 10.61±2.93 | 53.74±1.95 | 34.51±1.33 | 51.9±0.65 | ||||
根孢囊霉属 Rhizophagus | 明根孢囊霉R. clarus | 33.65±0.57 | 16.7±0.34 | 21.26±3.06 | 64.67±1.60 | - | 16.59±0.15 | |||
盾巨孢囊霉属 Scutellospora | 网纹盾巨孢囊霉S. reticulata | - | 16.9±0.69 | 1.22±1.06 | 51.28±0.66 | - | 33.52±0.68 | |||
隔球囊霉属 Septoglomus | 缩隔球囊霉S. constrictum | 34.75±1.64 | 53.16±1.39 | 13.53±5.71 | 57.6±1.99 | 55.03±2.40 | 51.36±0.60 | |||
沙荒隔球囊霉S. deserticola | 16.82±0.56 | 16.76±0.46 | - | 33.51±0.52 | - | 54.85±0.90 | ||||
黏质隔球囊霉S. viscosum | - | - | 2.85±1.38 | - | 50.61±0.32 | 50.61±0.33 | ||||
种数 Number of species | 16 | 17 | 22 | 19 | 18 | 16 |
Table 3 Important value of spatial distribution of AMF at species level
属 Genus | 种 Species | 银川Yinchuan | 中宁Zhongning | 靖远Jingyuan | ||||||
---|---|---|---|---|---|---|---|---|---|---|
健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | 健康树 Healthy tree | 病树Root rot-infected tree | |||||
无梗囊霉属 Acaulospora | 双网无梗囊霉A. bireticulata | 37.16±3.61 | 34.58±1.59 | - | 16.83±0.57 | 34.89±1.94 | 34.19±1.09 | |||
椒红无梗囊霉A. capsicula | 17.46±1.67 | 52.9±1.66 | - | 16.67±0.29 | 51.77±0.69 | 52.47±0.18 | ||||
凹坑无梗囊霉A. excavate | 51.41±0.47 | - | 0.61±0.53 | 33.97±0.85 | 51.64±0.31 | 57.75±0.51 | ||||
浅窝无梗囊霉A. lacunosa | - | - | 0.29±0.51 | 33.87±0.79 | - | - | ||||
光壁无梗囊霉A. laevis | 16.83±0.58 | 34.05±1.21 | 10.83±4.31 | 56.93±1.00 | 34.22±1.30 | - | ||||
蜜色无梗囊霉A. mellea | 52.49±2.12 | 51.84±0.91 | 5.28±0.83 | - | 16.61±0.19 | 16.59±0.15 | ||||
皱襞无梗囊霉A. rugosa | 33.54±0.49 | - | 4.13±4.66 | 52.59±1.41 | 34.76±2.18 | - | ||||
细凹无梗囊霉A. scrobiculata | - | 54.48±2.43 | - | - | 55.39±1.32 | 61.01±0.41 | ||||
孢果无梗囊霉A. sporocarpia | 16.72±0.37 | - | 0.15±0.26 | - | - | 33.3±0.32 | ||||
近明球囊霉属 Claroideoglomus | 近明球囊霉C. claroideum | - | - | 0.29±0.51 | 35.11±1.83 | - | - | |||
待霄草近明球囊霉C. drummondii | - | - | - | 16.59±0.15 | - | - | ||||
层状近明球囊霉C. lamellosum | - | - | 0.6±0.52 | 33.44±0.40 | 16.61±0.19 | - | ||||
纯黄近明球囊霉C. luteum | - | - | 2.91±3.25 | 34.67±1.46 | 16.62±0.21 | - | ||||
球囊霉属 Glomus | 卷曲球囊霉G. convolutum | - | 34.57±1.56 | 2.09±2.02 | 51.36±0.77 | - | - | |||
团集球囊霉G. glomerulatum | - | - | 0.15±0.26 | 16.67±0.30 | - | - | ||||
海得拉巴球囊霉G. hyderabadensis | - | 16.9±0.69 | - | - | - | - | ||||
大果球囊霉G. macrocarpum | 17.15±1.12 | 33.66±0.60 | 6.19±1.61 | - | 58.09±1.46 | 54.93±0.40 | ||||
宽柄球囊霉G. magnicaule | - | - | 0.15±0.26 | - | - | - | ||||
黑球囊霉G. melanosporum | 57.42±2.28 | 54.87±1.12 | 11.51±2.48 | 54.51±2.26 | 56.16±1.66 | 54.5±0.19 | ||||
多梗球囊霉G. multicaule | 33.65±0.57 | 52.63±0.43 | - | - | 16.61±0.19 | - | ||||
具疱球囊霉G. pustulatum | - | - | 1.68±2.17 | - | - | - | ||||
网状球囊霉G. reticulatum | 59.15±3.05 | 52.5±1.40 | 1.98±1.49 | 16.68±0.31 | 55.36±1.31 | 54.44±1.03 | ||||
G. sp1 | - | - | - | - | 52.7±0.19 | - | ||||
G. sp2 | 52.37±2.12 | - | - | - | - | - | ||||
G. sp3 | - | - | - | - | 55.26±1.33 | 53.67±1.42 | ||||
扭形球囊霉G. tortuosum | - | 56.58±0.97 | 1.68±2.53 | - | - | - | ||||
地表球囊霉G. versiforme | 67.25±4.38 | 64.72±2.28 | 10.61±2.93 | 53.74±1.95 | 34.51±1.33 | 51.9±0.65 | ||||
根孢囊霉属 Rhizophagus | 明根孢囊霉R. clarus | 33.65±0.57 | 16.7±0.34 | 21.26±3.06 | 64.67±1.60 | - | 16.59±0.15 | |||
盾巨孢囊霉属 Scutellospora | 网纹盾巨孢囊霉S. reticulata | - | 16.9±0.69 | 1.22±1.06 | 51.28±0.66 | - | 33.52±0.68 | |||
隔球囊霉属 Septoglomus | 缩隔球囊霉S. constrictum | 34.75±1.64 | 53.16±1.39 | 13.53±5.71 | 57.6±1.99 | 55.03±2.40 | 51.36±0.60 | |||
沙荒隔球囊霉S. deserticola | 16.82±0.56 | 16.76±0.46 | - | 33.51±0.52 | - | 54.85±0.90 | ||||
黏质隔球囊霉S. viscosum | - | - | 2.85±1.38 | - | 50.61±0.32 | 50.61±0.33 | ||||
种数 Number of species | 16 | 17 | 22 | 19 | 18 | 16 |
样地Sites | 物种丰度Species richness(SR) | Shannon-Wiener index(H) | Simpson index(D) | |
---|---|---|---|---|
银川 Yinchuan | 健康树Healthy tree | 11.00±0a | 1.90±0.02b | 0.79±0.03b |
病树Root rot-infected tree | 13.00±0a | 2.21±0.07a | 0.85±0.02a | |
中宁 Zhongning | 健康树Healthy tree | 16.00±2.65a | 2.31±0.18a | 0.87±0.02a |
病树Root rot-infected tree | 13.33±1.53a | 2.09±0.09a | 0.83±0.02a | |
靖远 Jingyuan | 健康树Healthy tree | 14.00±2.65a | 2.34±0.19a | 0.90±0.03a |
病树Root rot-infected tree | 13.67±2.52a | 2.28±0.07a | 0.88±0.01a |
Table 4 AMF species richness and α-diversity in soil of healthy and infected plants of L. barbarum L. from different cultivated sites
样地Sites | 物种丰度Species richness(SR) | Shannon-Wiener index(H) | Simpson index(D) | |
---|---|---|---|---|
银川 Yinchuan | 健康树Healthy tree | 11.00±0a | 1.90±0.02b | 0.79±0.03b |
病树Root rot-infected tree | 13.00±0a | 2.21±0.07a | 0.85±0.02a | |
中宁 Zhongning | 健康树Healthy tree | 16.00±2.65a | 2.31±0.18a | 0.87±0.02a |
病树Root rot-infected tree | 13.33±1.53a | 2.09±0.09a | 0.83±0.02a | |
靖远 Jingyuan | 健康树Healthy tree | 14.00±2.65a | 2.34±0.19a | 0.90±0.03a |
病树Root rot-infected tree | 13.67±2.52a | 2.28±0.07a | 0.88±0.01a |
环境因子 Environmental factor | Shannon-Wiener index | 种丰度 Species richness | 孢子密度 Spore density | AMF总侵染率 Total colonization rate |
---|---|---|---|---|
有机质OM | 0.086 | -0.029 | -0.657 | -0.771 |
全磷TP | -0.029 | 0.580 | -0.257 | -0.200 |
硝态氮NO3--N | 0.486 | 0.435 | 0.429 | 0.314 |
氨态氮NH4+-N | -0.714 | -0.203 | -0.771 | -0.543 |
全氮TN | 0.143 | 0.116 | -0.029 | 0.257 |
全钾TK | 0.371 | -0.261 | 0.429 | 0.543 |
速效钾AK | -0.657 | -0.812* | -0.086 | 0.029 |
速效磷AP | -0.429 | 0.000 | -0.886* | -0.771 |
pH | 0.116 | -0.279 | 0.638 | 0.812* |
易提取球囊霉素EEG | 0.257 | 0.203 | -0.371 | -0.200 |
总球囊霉素TG | 0.143 | 0.435 | -0.600 | -0.543 |
Table 5 Correlation analysis between species diversity of AMF and environmental factors
环境因子 Environmental factor | Shannon-Wiener index | 种丰度 Species richness | 孢子密度 Spore density | AMF总侵染率 Total colonization rate |
---|---|---|---|---|
有机质OM | 0.086 | -0.029 | -0.657 | -0.771 |
全磷TP | -0.029 | 0.580 | -0.257 | -0.200 |
硝态氮NO3--N | 0.486 | 0.435 | 0.429 | 0.314 |
氨态氮NH4+-N | -0.714 | -0.203 | -0.771 | -0.543 |
全氮TN | 0.143 | 0.116 | -0.029 | 0.257 |
全钾TK | 0.371 | -0.261 | 0.429 | 0.543 |
速效钾AK | -0.657 | -0.812* | -0.086 | 0.029 |
速效磷AP | -0.429 | 0.000 | -0.886* | -0.771 |
pH | 0.116 | -0.279 | 0.638 | 0.812* |
易提取球囊霉素EEG | 0.257 | 0.203 | -0.371 | -0.200 |
总球囊霉素TG | 0.143 | 0.435 | -0.600 | -0.543 |
[1] | 杨云峰, 王光明, 侯祥英, 等. 我国枸杞育种与栽培研究进展[J]. 农业科技通讯, 2019(8):72-74. |
Yang YF, Wang GM, Hou XY, et al. Research progress of Lycium barbarum breeding and cultivation in China[J]. Bulletin of Agricultural Science and Technology, 2019(8):72-74. | |
[2] | 王益民, 张宝琳. 我国枸杞属物种资源及发展对策[J]. 世界林业研究, 2021, 34(3):107-111. |
Wang YM, Zhang BL. Species resources and the development strategies of Lycium L. in China[J]. World Forestry Research, 2021, 34(3):107-111. | |
[3] | 朱晓峰, 刘宏军, 席军强, 等. 枸杞根腐病病原菌的生物学特性研究[J]. 经济林研究, 2015, 33(4):128-132. |
Zhu XF, Liu HJ, Xi JQ, et al. Biological characteristics of root rot pathogen in Lycium barbarum[J]. Nonwood Forest Research, 2015, 33(4):128-132. | |
[4] | 朱会文. 甘肃省景电灌区枸杞根腐病的发生与防治[J]. 现代农业科技, 2018(5):121-125. |
Zhu HW. Occurrence and control of wolfberry root rot in Jingdian irrigation area of Gansu province[J]. Xiandai Nongye Keji, 2018(5):121-125. | |
[5] | 陈伶俐. 柴达木地区枸杞根腐病病原菌生物学特性及药剂防治研究[D]. 西宁:青海大学, 2015. |
Chen LL. Biological characteristics of pathogens causing wolf berry root rot and fungicides controlling experiment[D]. Xining:Qinghai University, 2015. | |
[6] | Bai L, Li X, Cao Y, et al. Fusarium culmorum and Fusarium equiseti causing root rot disease on Lycium barbarum(Goji Berry)in China[J]. Plant Disease, 2020, 104(11):3066. |
[7] | 郭香. 靖远县枸杞根腐病的发生危害及绿色防控技术[J]. 农业科技与信息, 2013(21):8-9. |
Guo X. Occurrence and damage of wolfberry root rot and green control technology in Jingyuan County[J]. Agricultural Science-technology and Information, 2013(21):8-9. | |
[8] | 刘淑娟. 景泰县草窝滩镇枸杞根腐病的发生及防治[J]. 防护林科技, 2009(3):116-117. |
Liu SJ. Occurrence and control of wolfberry root rot in Caowotan town of Jingtai County[J]. Protection Forest Science and Technology, 2009(3):116-117. | |
[9] | 陈伶俐, 马洪福, 李亚娟, 等. 10种杀菌剂对枸杞根腐病菌的室内毒力测定[J]. 青海大学学报:自然科学版, 2015, 33(5):10-13. |
Chen LL, Ma HF, Li YJ, et al. Toxicity measurement of 10 fungicides on Fusarium causing wolf berry rot root[J]. Journal of Qinghai University:Natural Science Edition, 2015, 33(5):10-13. | |
[10] | 张小彦, 何静, 侯彩霞, 等. 枸杞根腐病菌拮抗菌株的筛选与鉴定[J]. 浙江农业学报, 2020, 32(5):858-865. |
Zhang XY, He J, Hou CX, et al. Toxicity measurement of 10 fungicides on Fusarium causing wolf berry rot root[J]. Acta Agriculturae Zhejiangensis, 2020, 32(5):858-865. | |
[11] | 宋学云, 俞建中, 许明伟. 2种药剂防治枸杞根腐病田间药效试验[J]. 中国园艺文摘, 2017, 33(7):225-226. |
Song XY, Yu JZ, Xu MW. Field efficacy of two fungicides against root rot of Lycium barbarum[J]. Chinese Horticulture Abstracts, 2017, 33(7):225-226. | |
[12] | 侯劭炜, 胡君利, 吴福勇, 等. 丛枝菌根真菌的抑病功能及其应用[J]. 应用与环境生物学报, 2018, 24(5):941-951. |
Hou SY, Hu JL, Wu FY, et al. The function and potential application of disease suppression by arbuscular mycorrhizal fungi[J]. Chinese Journal of Applied and Environmental Biology, 2018, 24(5):941-951. | |
[13] |
Aguilar-Paredes A, Valdés G, Nuti M. Ecosystem functions of microbial consortia in sustainable agriculture[J]. Agronomy, 2020, 10(12):1902.
doi: 10.3390/agronomy10121902 URL |
[14] | 李敏. AM真菌对西瓜抗枯萎病的效应及其机制[D]. 北京:中国农业大学, 2005. |
Li M. Effects of arbuscular mycorrhiza on resistance to Fusarium wilt by watermelon(Citrullus lanatus)and related mechanisms[D]. Beijing:China Agricultural University, 2005. | |
[15] |
Jamiolkowska A, Michalek W. Effect of mycorrhiza inoculation of pepper seedlings(Capsicum annuum L.)on the growth and protection against Fusarium oxysporum infection[J]. Acta Scientiarum Polonorum-hortorum Cultus, 2019, 18(1):161-169.
doi: 10.24326/asphc.2019.1.16 |
[16] |
Nafady NA, Hashem M, Hassan EA, et al. The combined effect of arbuscular mycorrhizae and plant-growth-promoting yeast improves sunflower defense against Macrophomina phaseolina diseases[J]. Biological Control, 2019, 138:104049.
doi: 10.1016/j.biocontrol.2019.104049 URL |
[17] |
Gao P, Guo Y, Li Y, et al. Effects of dual inoculation of AMF and rhizobium on alfalfa(Medicago sativa)root rot caused by Microdochium tabacinum[J]. Australasian Plant Pathology, 2018, 47(2):195-203.
doi: 10.1007/s13313-018-0543-2 URL |
[18] |
Ianson DC, Allen MF. The effects of soil texture on extraction of vesicular-arbuscular mycorrhizal fungal spores from Arid Sites[J]. Mycologia, 1986, 78:164-168.
doi: 10.2307/3793161 URL |
[19] |
刘海跃, 李欣玫, 张琳琳, 等. 西北荒漠带花棒根际丛枝菌根真菌生态地理分布[J]. 植物生态学报, 2018, 42(2):252-260.
doi: 10.17521/cjpe.2017.0138 |
Liu HY, Li XM, Zhang LL, et al. Eco-geographical distribution of arbuscular mycorrhizal fungi associated with Hedysarum scoparium in the desert zone of northwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(2):252-260.
doi: 10.17521/cjpe.2017.0138 URL |
|
[20] | Phillips JM, Hayman DS. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Mycological Society, 1970(55):158-160. |
[21] | 唐明, 杨慧平, 王亚军, 等. 宁夏旱生植物VA菌根真菌的研究[J]. 西北林学院学报, 2005(2):78-82. |
Tang M, Yang HP, Wang YJ, et al. Arbuscular mycorrhizal fungi(AMF)of xerophilous trees in Ningxia[J]. Journal of Northwest Forestry University, 2005(2):78-82. | |
[22] | 刘洪光. AM真菌提高枸杞耐盐性的机制研究[D]. 杨凌:西北农林科技大学, 2016. |
Liu HG. Mechanisms of arbuscular mycorrhizal fungi(AMF)enhancing salt tolerance of Lycium barbarum L.[D]. Yangling:Northwest A&F University, 2016. | |
[23] | 张海涵. 黄土高原枸杞根际微生态特征及其共生真菌调控宿主生长与耐旱响应机制[D]. 杨凌:西北农林科技大学, 2011. |
Zhang HH. Micro-ecosystem associated with the rhizosphere of Lycium barbarum from the loess plateau and the mechanisms of symbiotic fungal inoculation on the host plant growth and drought resistance[D]. Yangling:Northwest A&F University, 2011. | |
[24] | 盛敏. VA菌根真菌提高玉米耐盐性机制与农田土壤微生物多样性研究[D]. 杨凌:西北农林科技大学, 2008. |
Sheng M. Study on VA mycorrhizal fungi influence on salt-resistant mechanisms of maize plants and microbiological diversity in farmland soils[D]. Yangling:Northwest A&F University, 2008. | |
[25] | 赵蕾. 典型喀斯特区域土壤AMF与玉米纹枯病抗性关系探析[D]. 桂林:广西师范大学, 2019. |
Zhao L. Analysis of The relationship between AMF community and resistance to corn sheath blight in typical karst regions[D]. Guilin:Guangxi Normal University, 2019. | |
[26] | 宋放, 吴黎明, 李红飞, 等. 赣州橘园根系内生丛枝菌根真菌群落多样性鉴定及其受黄龙病菌侵染的影响[J]. 果树学报, 2019, 36(7):892-902. |
Song F, Wu LM, Li HF, et al. Identification of root endophytic arbuscular mycorrhizal fungi community diversity and its variations under the infection of Candidatus Liberibacter asiaticus in the citrus orchard of Ganzhou city[J]. Journal of Fruit Science, 2019, 36(7):892-902. | |
[27] | 张智慧, 陈迪, 赵丹丹, 等. 三七根中丛枝菌根真菌与深色有隔内生真菌侵染状况研究[J]. 中国中药杂志, 2011(17):2311-2315. |
Zhang ZH, Chen D, Zhao DD, et al. Colonization of arbuscular mycorrhizal fungi and dark septate endophytes in Panax notoginseng[J]. China Journal of Chinese Materia Medica, 2011(17):2311-2315. | |
[28] | 陈保冬, 于萌, 郝志鹏, 等. 丛枝菌根真菌应用技术研究进展[J]. 应用生态学报, 2019, 30(3):1035-1046. |
Chen BD, Yu M, Hao ZP, et al. Research progress in arbuscular mycorrhizal technology[J]. Chinese Journal of Applied Ecology, 2019, 30(3):1035-1046. | |
[29] |
Aleandri MP, Martignoni D, Reda R, et al. Effects of preconditioning through mycorrhizal inoculation on the control of melon root rot and vine decline caused by Monosporascus cannonballus[J]. Journal of Phytopathology, 2015, 163(11/12):898-907.
doi: 10.1111/jph.12389 URL |
[30] | 王倡宪, 李晓林, 秦岭, 等. 利用丛枝菌根真菌提高植物抗病性研究进展[J]. 中国生物防治, 2007(S1):64-69. |
Wang CX, Li XL, Qin L, et al. Review on increasing resistance to pathogens by arbuscular mycorrhizal fungi[J]. Chinese Journal of Biological Control, 2007(S1):64-69. |
[1] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[2] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[3] | XU Xiao-wen, LI Jin-cang, HAI Du, ZHA Yu-ping, SONG Fei, WANG Yi-xun. Identification and Diversity Analysis of Mycoviruses from the Phytopathogenic Fungus Colletotrichum spp. of Walnut [J]. Biotechnology Bulletin, 2023, 39(3): 278-289. |
[4] | YANG Dong-ya, QI Rui-xue LI, Zhao-xuan , LIN Wei, MA Hui, ZHANG Xue-yan. Screening, Identification and Growth-promoting Effect of Antagonistic Bacillus spp. Against Cucumber Fusarium solani [J]. Biotechnology Bulletin, 2023, 39(2): 211-220. |
[5] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[6] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[7] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[8] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[9] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[10] | XIE Guo-zhen, TANG Yuan, NING Xiao-mei, QIU Ji-hui, TAN Zhou-jin. Effects of Dendrobium officinale Polysaccharides on the Intestinal Mucosal Structure and Microbiota in Mice Fed a High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(2): 150-157. |
[11] | GAO Hui-hui, JIA Chen-bo, HAN Qin, SU Jian-yu, XU Chun-yan. Microbiological Mechanism of Root Rot of Lycium barbarum Ningqi-7 [J]. Biotechnology Bulletin, 2022, 38(12): 244-251. |
[12] | LIU Shuang, YAO Jia-ni, SHEN Cong, DAI Jin-xia. Fluorescent Quantitative PCR of nifH Gene and Diversity Analysis of Nitrogen-fixing Bacteria in the Rhizosphere Soil of Caragana spp. of Desert Grassland [J]. Biotechnology Bulletin, 2022, 38(12): 252-262. |
[13] | CHEN Yu-jie, ZHENG Hua-bao, ZHOU Xin-yan. Modified High-throughput Sequencing Reveals the Effects of Different Algicides towards Algal Community [J]. Biotechnology Bulletin, 2022, 38(11): 70-79. |
[14] | LI Ting-ting, DENG Xu-hui, LI Ruo-chen, LIU Hong-jun, SHEN Zong-zhuan, LI Rong, SHEN Qi-rong. Effects of Ralstonia solanacearum Infection on Soil Fungal Community Diversity [J]. Biotechnology Bulletin, 2022, 38(10): 195-203. |
[15] | YAN Hui-lin, LU Guang-xin, DENG Ye, GU Song-song, YAN Cheng-liang, MA Kun, ZHAO Yang-an, ZHANG Hai-juan, WANG Ying-cheng, ZHOU Xue-li, DOU Sheng-yun. Effects of Rhizobium Seed Dressing on the Soil Microbial Community of Grass-legume Mixtures in Alpine Regions [J]. Biotechnology Bulletin, 2022, 38(10): 204-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||