Biotechnology Bulletin ›› 2022, Vol. 38 ›› Issue (2): 150-157.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0390
Previous Articles Next Articles
XIE Guo-zhen(), TANG Yuan, NING Xiao-mei, QIU Ji-hui, TAN Zhou-jin()
Received:
2021-03-30
Online:
2022-02-26
Published:
2022-03-09
Contact:
TAN Zhou-jin
E-mail:191431657@qq.com;tanzhjin@sohu.com
XIE Guo-zhen, TANG Yuan, NING Xiao-mei, QIU Ji-hui, TAN Zhou-jin. Effects of Dendrobium officinale Polysaccharides on the Intestinal Mucosal Structure and Microbiota in Mice Fed a High-fat Diet[J]. Biotechnology Bulletin, 2022, 38(2): 150-157.
Fig. 1 Effects of DOP on the intestinal mucosal structure of mice fed a high fat diet N:Normal group. H:High fat diet group. HP:DOP group. The same below
Fig. 3 Effect of DOP on the Alpha diversity of mucosa-associated microbiota of mice fed a high fat diet(±s,N = 5) * refers to HP compared with N,P<0.05
[1] |
Wan MLY, Ling KH, El-Nezami H, et al. Influence of functional food components on gut health[J]. Crit Rev Food Sci Nutr, 2019, 59(12):1927-1936.
doi: 10.1080/10408398.2018.1433629 URL |
[2] |
Gulhane M, Murray L, Lourie R, et al. High fat diets induce colonic epithelial cell stress and inflammation that is reversed by IL-22[J]. Sci Rep, 2016, 6:28990.
doi: 10.1038/srep28990 pmid: 27350069 |
[3] |
Proctor C, Thiennimitr P, Chattipakorn N, et al. Diet, gut microbiota and cognition[J]. Metab Brain Dis, 2017, 32(1):1-17.
doi: 10.1007/s11011-016-9917-8 pmid: 27709426 |
[4] |
Zhang M, Yang XJ. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases[J]. World J Gastroenterol, 2016, 22(40):8905-8909.
doi: 10.3748/wjg.v22.i40.8905 URL |
[5] |
Nguyen SG, Kim J, Guevarra RB, et al. Laminarin favorably modulates gut microbiota in mice fed a high-fat diet[J]. Food Funct, 2016, 7(10):4193-4201.
pmid: 27713958 |
[6] |
Shang QS, Wang Y, Pan L, et al. Dietary polysaccharide from Enteromorpha clathrata modulates gut microbiota and promotes the growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp[J]. Mar Drugs, 2018, 16(5):167.
doi: 10.3390/md16050167 URL |
[7] |
Shi HJ, Chang YG, Gao Y, et al. Dietary fucoidan of Acaudina molpadioides alters gut microbiota and mitigates intestinal mucosal injury induced by cyclophosphamide[J]. Food Funct, 2017, 8(9):3383-3393.
doi: 10.1039/C7FO00932A URL |
[8] |
Kanwal S, Joseph TP, Owusu L, et al. A polysaccharide isolated from Dictyophora indusiata promotes recovery from antibiotic-driven intestinal dysbiosis and improves gut epithelial barrier function in a mouse model[J]. Nutrients, 2018, 10(8):1003.
doi: 10.3390/nu10081003 URL |
[9] | 蔡光先, 李娟, 李顺祥, 等. 铁皮石斛古代与现代的应用概况[J]. 湖南中医药大学学报, 2011, 31(5):77-81. |
Cai GX, Li J, Li SX, et al. Applications of Dendrobium officinale in ancient and modern times[J]. J Tradit Chin Med Univ Hunan, 2011, 31(5):77-81. | |
[10] |
Zeng Q, Ko CH, Siu WS, et al. Polysaccharides of Dendrobium officinale Kimura & Migo protect gastric mucosal cell against oxidative damage-induced apoptosis in vitro and in vivo[J]. J Ethnopharmacol, 2017, 208:214-224.
doi: 10.1016/j.jep.2017.07.006 URL |
[11] |
Liang J, Chen S, Chen J, et al. Therapeutic roles of polysaccharides from Dendrobium Officinale on colitis and its underlying mechanisms[J]. Carbohydr Polym, 2018, 185:159-168.
doi: 10.1016/j.carbpol.2018.01.013 URL |
[12] | 中华人民共和国药典委员会. 中华人民共和国药典一部[S]. 北京: 中国医药科技出版社, 2020:295-296. |
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China(No. 1). Beijing: China Medical Science and Technology Press, 2020:295-296. | |
[13] |
Vancamelbeke M, Vermeire S. The intestinal barrier:a fundamental role in health and disease[J]. Expert Rev Gastroenterol Hepatol, 2017, 11(9):821-834.
doi: 10.1080/17474124.2017.1343143 URL |
[14] |
Camilleri M, Madsen K, Spiller R, et al. Intestinal barrier function in health and gastrointestinal disease[J]. Neurogastroenterol Motil, 2012, 24(6):503-512.
doi: 10.1111/nmo.2012.24.issue-6 URL |
[15] |
Schroeder BO, Birchenough GMH, Ståhlman M, et al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration[J]. Cell Host Microbe, 2018, 23(1):27-40. e7.
doi: S1931-3128(17)30498-5 pmid: 29276171 |
[16] |
Ding SL, Lund PK. Role of intestinal inflammation as an early event in obesity and insulin resistance[J]. Curr Opin Clin Nutr Metab Care, 2011, 14(4):328-333.
doi: 10.1097/MCO.0b013e3283478727 URL |
[17] |
Borgo F, Garbossa S, Riva A, et al. Body mass index and sex affect diverse microbial niches within the gut[J]. Front Microbiol, 2018, 9:213.
doi: 10.3389/fmicb.2018.00213 URL |
[18] |
Chen WG, Liu FL, Ling ZX, et al. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer[J]. PLoS One, 2012, 7(6):e39743.
doi: 10.1371/journal.pone.0039743 URL |
[19] |
Liguori G, Lamas B, Richard ML, et al. Fungal dysbiosis in mucosa-associated microbiota of Crohn’s disease patients[J]. J Crohns Colitis, 2016, 10(3):296-305.
doi: 10.1093/ecco-jcc/jjv209 URL |
[20] |
Galley JD, Nelson MC, Yu Z, et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota[J]. BMC Microbiol, 2014, 14:189.
doi: 10.1186/1471-2180-14-189 URL |
[21] |
Dalen G, Rachah A, Nørstebø H, et al. Transmission dynamics of intramammary infections caused by Corynebacterium species[J]. J Dairy Sci, 2018, 101(1):472-479.
doi: 10.3168/jds.2017-13162 URL |
[22] |
Costales J, Alsyouf M, Napolitan P, et al. Corynebacterium urealyt-icum:rare urinary tract infection with serious complications[J]. Can J Urol, 2019, 26(1):9680-9682.
pmid: 30797252 |
[23] |
Abbott Y, Efstratiou A, Brennan G, et al. Toxigenic Corynebacterium ulcerans associated with upper respiratory infections in cats and dogs[J]. J Small Anim Pract, 2020, 61(9):554-560.
doi: 10.1111/jsap.13185 pmid: 32734615 |
[24] |
Das S, Rao AS, Sahu SK, et al. Corynebacterium spp as causative agents of microbial keratitis[J]. Br J Ophthalmol, 2016, 100(7):939-943.
doi: 10.1136/bjophthalmol-2015-306749 URL |
[25] |
Ogasawara M, Matsuhisa T, Kondo T, et al. Pyogenic spondylitis with acute course caused by Corynebacterium simulans[J]. J Infect Chemother, 2020, 26(3):294-297.
doi: S1341-321X(19)30329-0 pmid: 31735633 |
[26] |
Ondusko DS, Nolt D. Staphylococcus aureus[J]. Pediatr Rev, 2018, 39(6):287-298.
doi: 10.1542/pir.2017-0224 URL |
[27] |
Hedblom GA, Reiland HA, Sylte MJ, et al. Segmented filamentous bacteria - metabolism meets immunity[J]. Front Microbiol, 2018, 9:1991.
doi: 10.3389/fmicb.2018.01991 pmid: 30197636 |
[28] |
Chung YW, Gwak HJ, Moon S, et al. Functional dynamics of bacterial species in the mouse gut microbiome revealed by metagenomic and metatranscriptomic analyses[J]. PLoS One, 2020, 15(1):e0227886.
doi: 10.1371/journal.pone.0227886 URL |
[29] |
Tan HZ, Zhai QX, Chen W. Investigations of Bacteroides spp. towards next-generation probiotics[J]. Food Res Int, 2019, 116:637-644.
doi: 10.1016/j.foodres.2018.08.088 URL |
[30] |
Li ZR, Jia RB, Wu J, et al. Sargassum fusiforme polysaccharide partly replaces acarbose against type 2 diabetes in rats[J]. Int J Biol Macromol, 2021, 170:447-458.
doi: 10.1016/j.ijbiomac.2020.12.126 URL |
[31] |
Dong J, Liang Q, Niu Y, et al. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota[J]. Int J Biol Macromol, 2020, 159:725-738.
doi: 10.1016/j.ijbiomac.2020.05.042 URL |
[32] |
Wang L, Li C, Huang Q, et al. Polysaccharide from Rosa roxburghii tratt fruit attenuates hyperglycemia and hyperlipidemia and regulates colon microbiota in diabetic db/db mice[J]. J Agric Food Chem, 2020, 68(1):147-159.
doi: 10.1021/acs.jafc.9b06247 URL |
[33] |
Stadlbauer V, Engertsberger L, Komarova I, et al. Dysbiosis, gut barrier dysfunction and inflammation in dementia:a pilot study[J]. BMC Geriatr, 2020, 20(1):248.
doi: 10.1186/s12877-020-01644-2 pmid: 32690030 |
[1] | SHA Shan-shan, DONG Shi-rong, YANG Yu-ju. Research Progress in Gut Microbiota and Metabolites Regulating Host Intestinal Immunity [J]. Biotechnology Bulletin, 2023, 39(8): 126-136. |
[2] | YU Yang, LIU Tian-hai, LIU Li-xu, TANG Jie, PENG Wei-hong, CHEN Yang, TAN Hao. Study on Aerosol Microbial Community in the Production Workshop of Morel Spawn [J]. Biotechnology Bulletin, 2023, 39(5): 267-275. |
[3] | LI Shan-jia, LEI Yu-xin, SUN Meng-ge, LIU Hai-feng, WANG Xing-min. Research Progress in the Diversity of Endophytic Bacteria in Seeds and Their Interaction with Plants [J]. Biotechnology Bulletin, 2023, 39(4): 166-175. |
[4] | XIONG Shu-qi. Towards the Understanding on the Physiological Functions of Bile Acids and Interactions with Gut Microbiota [J]. Biotechnology Bulletin, 2023, 39(4): 187-200. |
[5] | XU Xiao-wen, LI Jin-cang, HAI Du, ZHA Yu-ping, SONG Fei, WANG Yi-xun. Identification and Diversity Analysis of Mycoviruses from the Phytopathogenic Fungus Colletotrichum spp. of Walnut [J]. Biotechnology Bulletin, 2023, 39(3): 278-289. |
[6] | WANG Song, JIAN Xiao-ping, PAN Wan-shu, ZHANG Yong-guang, WANG Tao, YOU Ling. Effects of Fermented Corn Xiaoqu Distiller's Grains Feed on the Intestinal Microbiota of Growing-Finishing Pigs [J]. Biotechnology Bulletin, 2022, 38(9): 248-257. |
[7] | WANG Zi-ye, WANG Zhi-gang, YAN Ai-hua. Diversity of Soil Protist Community in the Rhizosphere of Morus alba L. at Different Tree Ages [J]. Biotechnology Bulletin, 2022, 38(8): 206-215. |
[8] | CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(8): 225-232. |
[9] | GAO Xiao-ning, LIU Rui, WU Zi-lin, WU Jia-yun. Characteristics of Endophytic Fungal and Bacterial Community in the Stalks of Sugarcane Cultivars Resistant to Ratoon Stunting Disease [J]. Biotechnology Bulletin, 2022, 38(6): 166-173. |
[10] | XU Yang, ZHANG Guan-chu, DING Hong, QIN Fei-fei, ZHANG Zhi-meng, DAI Liang-xiang. Effects of Soil Types on Bacterial Community Diversity on the Rhizosphere Soil of Arachis hypogaea and Yield [J]. Biotechnology Bulletin, 2022, 38(6): 221-234. |
[11] | ZHONG Hui, LIU Ya-jun, WANG Bin-hua, HE Meng-jie, WU Lan. Effects of Analysis Methods on the Analyzed Results of 16S rRNA Gene Amplicon Sequencing in Bacterial Communities [J]. Biotechnology Bulletin, 2022, 38(6): 81-92. |
[12] | HE Ya-lun, ZENG Li-rong, LIU Xiong, ZHANG Ling, WANG Qiong. Effects of High-dose Tannic Acid on the Intestinal Barrier Function and Gut Microbiota in Mice [J]. Biotechnology Bulletin, 2022, 38(4): 278-287. |
[13] | ZHOU Xiao-nan, XU Jin-qing, LEI Yu-qing, WANG Hai-qing. Development of SNP Markers in Medicago archiducis-nicolai Based on GBS-seq [J]. Biotechnology Bulletin, 2022, 38(4): 303-310. |
[14] | ZHONG Ming-yue, LIU Chun-yan, YAN Yan, ZHANG Xiao-hui, YUAN Hai-sheng, XU Guo-quan, ZHANG He-ping, WANG Yu-zhen. Improvement Effect of Bifidobacterium lactis V9 on NAFLD Rats Induced by High-fat Diet [J]. Biotechnology Bulletin, 2022, 38(3): 181-187. |
[15] | LIU Shuang, YAO Jia-ni, SHEN Cong, DAI Jin-xia. Fluorescent Quantitative PCR of nifH Gene and Diversity Analysis of Nitrogen-fixing Bacteria in the Rhizosphere Soil of Caragana spp. of Desert Grassland [J]. Biotechnology Bulletin, 2022, 38(12): 252-262. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||