Biotechnology Bulletin ›› 2023, Vol. 39 ›› Issue (5): 243-253.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1153
Previous Articles Next Articles
REN Pei-dong1,2(), PENG Jian-ling1,2, LIU Sheng-hang1,2, YAO Zi-ting1,3, ZHU Gui-ning1,3,4, LU Guang-tao2, LI Rui-fang1,3,4()
Received:
2022-09-20
Online:
2023-05-26
Published:
2023-06-08
Contact:
LI Rui-fang
E-mail:nmgpeytonren@126.com;ruifangli@gxaas.net
REN Pei-dong, PENG Jian-ling, LIU Sheng-hang, YAO Zi-ting, ZHU Gui-ning, LU Guang-tao, LI Rui-fang. Isolation and Identification of a Bacillus safensis Strain GX-H6 and Its Biocontrol Effect on Bacterial Leaf Streak of Rice[J]. Biotechnology Bulletin, 2023, 39(5): 243-253.
Fig. 1 Morphological characteristics and antagonistic effect of GX-H6 A: Antibacterial effect of GX-H6 on Xoc GX01. B: Colonies morphology of strain GX-H6. C: Microscopic observation of strain GX-H6
Fig. 2 Phylogenetic tree of tested strains and other Bacillus based on 16S rDNA gene and gyrB gene sequence The scale indicates 0.1% sequence difference
Fig. 3 Antagonistic spectrum of GX-H6 against bacteria A: Antagonistic spectrum of GX-H6 against different Xoc strains(1: 3-1 isolate; 2: 4-1 isolate; 3: 5-1 isolate; 4: 6 isolate; 5: 6-2 isolate; 6: 6-3 isolate; 7: 7-1 isolate; 8: 8-1 isolate; 9: 8-2 isolate; 10: 2015 isolate). B: Antagonistic spectrum of GX-H6 against different Xoo strains and other plant pathogens(1: Xoo PXO99A strain; 2: Xoo K74 strain; 3: Xoo 1-1 isolate; 4: Xoo 1-2 isolate; 5: Xoo 1-3 isolate; 6: Xcc 8004 strain; 7: Xac 9 isolate; 8: Xac 12 isolate; 9: A.avenae subsp. avenae Pas-1 strain; 10: P.syringae pv. tomato DC3000 strain; 11:P.hibiscicola Y2 isolate; 12:P.hibiscicola Y3 isolate). The data is average diameter± standard deviation in the Figure, and different letters indicate significant differences at the P < 0.05
Fig. 4 Antagonistic spectrum of GX-H6 against six plant pathogenic fungi strains A: Qualitative analysis via plate confrontation method. B: Quantitative analysis via bacterial plate method. The data in the Figure are average diameter± standard deviation, and different letters indicate significant differences at P < 0.05. 1: N. novaehollandiae. 2: C. plurivorum. 3: B. cinere. 4: F. oxysporum f. sp. cubense, Foc. 5: C. gloeosporioides. 6: M. oryzae
药剂处理 Treatment | 用量 Dose/(L·hm-2) | 药前病情指数 Pre-treament disease index | 第3次药后10 d病情指数 Post-treatment disease index | 防效 Relative control effect/% | 差异显著性 Significance |
---|---|---|---|---|---|
GX-H6生防菌剂 | 7.5 | 0.6 | 6.8 | 65.0 | bC |
11.25 | 0.6 | 6.1 | 68.6 | bBC | |
22.5 | 0.7 | 5.2 | 72.8 | aAB | |
20%噻菌铜悬浮剂 | 1.875 | 0.7 | 4.6 | 76.0 | aA |
清水对照(CK) | 0.7 | 19.2 | ─ | ─ |
Table 1 Experimental results of GX-H6 biocontrol agent against bacterial leaf streak of rice
药剂处理 Treatment | 用量 Dose/(L·hm-2) | 药前病情指数 Pre-treament disease index | 第3次药后10 d病情指数 Post-treatment disease index | 防效 Relative control effect/% | 差异显著性 Significance |
---|---|---|---|---|---|
GX-H6生防菌剂 | 7.5 | 0.6 | 6.8 | 65.0 | bC |
11.25 | 0.6 | 6.1 | 68.6 | bBC | |
22.5 | 0.7 | 5.2 | 72.8 | aAB | |
20%噻菌铜悬浮剂 | 1.875 | 0.7 | 4.6 | 76.0 | aA |
清水对照(CK) | 0.7 | 19.2 | ─ | ─ |
特征 Characteristics | 值 Value |
---|---|
Toal length | 3 763 758 bp |
GC content | 41.51% |
ORF number | 3 754 |
ORF total length | 3 301 671 bp |
Longest ORF length | 10 707 bp |
Shortest ORF length | 90 bp |
Average ORF length | 879 bp |
ORF/Genome(coding percentage) | 87.72% |
Table 2 Genomic characteristics of B. safensis GX-H6
特征 Characteristics | 值 Value |
---|---|
Toal length | 3 763 758 bp |
GC content | 41.51% |
ORF number | 3 754 |
ORF total length | 3 301 671 bp |
Longest ORF length | 10 707 bp |
Shortest ORF length | 90 bp |
Average ORF length | 879 bp |
ORF/Genome(coding percentage) | 87.72% |
Fig. 7 Genomic characteristics of B. safensis GX-H6 A:The genomic circle map of B. safensis GX-H6. B:GOSlim illustration of B. safensis GX-H6;C:KEGG chart of B. safensis GX-H6
区域Region | 起始Start | 终止End | 最似产物Most similar | 类型Type | 相似度Similarity |
---|---|---|---|---|---|
1 | 693 587 | 724 627 | N/A | Betalactone | N/A |
2 | 1 190 336 | 1 231 436 | N/A | T3PKS | N/A |
3 | 1 271 177 | 1 291 720 | N/A | Terpene | N/A |
4 | 1 357 616 | 1 386 025 | Fengycin | Betalactone | 53% |
5 | 1 575 524 | 1 597 704 | Plantazolicin | LAP,RRE-containing | 91% |
6 | 2 112 286 | 2 140 932 | Carotenoid | Terpene, siderophore | 50% |
7 | 2 287 110 | 2 308 015 | N/A | RRE-containing | N/A |
8 | 2 781 557 | 2 863 632 | Lichenysin | NRPS | 92% |
9 | 3 002 623 | 3 012 922 | N/A | RiPP-like | N/A |
10 | 3 231 420 | 3 278 568 | Bacillibactin | NRPS | 53% |
11 | 3 545 166 | 3 586 587 | Bacilysin | Other | 85% |
Table 3 Prediction of secondary metabolites in B. safensis GX-H6 genome
区域Region | 起始Start | 终止End | 最似产物Most similar | 类型Type | 相似度Similarity |
---|---|---|---|---|---|
1 | 693 587 | 724 627 | N/A | Betalactone | N/A |
2 | 1 190 336 | 1 231 436 | N/A | T3PKS | N/A |
3 | 1 271 177 | 1 291 720 | N/A | Terpene | N/A |
4 | 1 357 616 | 1 386 025 | Fengycin | Betalactone | 53% |
5 | 1 575 524 | 1 597 704 | Plantazolicin | LAP,RRE-containing | 91% |
6 | 2 112 286 | 2 140 932 | Carotenoid | Terpene, siderophore | 50% |
7 | 2 287 110 | 2 308 015 | N/A | RRE-containing | N/A |
8 | 2 781 557 | 2 863 632 | Lichenysin | NRPS | 92% |
9 | 3 002 623 | 3 012 922 | N/A | RiPP-like | N/A |
10 | 3 231 420 | 3 278 568 | Bacillibactin | NRPS | 53% |
11 | 3 545 166 | 3 586 587 | Bacilysin | Other | 85% |
[1] |
Niño-Liu DO, Ronald PC, Bogdanove AJ. Xanthomonas oryzae pathovars: model pathogens of a model crop[J]. Mol Plant Pathol, 2006, 7(5): 303-324.
doi: 10.1111/j.1364-3703.2006.00344.x pmid: 20507449 |
[2] | Ou SH, Commonwealth Mycological Institute(Great Britain). Rice diseases[M]. 2nd ed. Surrey: UK: Commonwealth Mycological Institute; 1985. |
[3] | Suh JP, Jeung JU, Noh TH, et al. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice[J]. Rice(NY), 2013, 6(1): 5. |
[4] |
Chen XF, Liu PC, Mei L, et al. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice[J]. Plant Commun, 2021, 2(3): 100143.
doi: 10.1016/j.xplc.2021.100143 URL |
[5] |
Wang CL, Fan YL, Zheng CK, et al. High-resolution genetic mapping of rice bacterial blight resistance gene Xa23[J]. Mol Genet Genomics, 2014, 289(5): 745-753.
doi: 10.1007/s00438-014-0848-y pmid: 24715026 |
[6] | 岑贞陆, 黄思良, 李容柏, 等. 稻种材料抗细菌性条斑病性鉴定[J]. 安徽农业科学, 2007, 35(22): 6850-6851, 6853. |
Cen ZL, Huang SL, Li RB, et al. Identification of resistance of rice materials to bacterial leaf streak[J]. J Anhui Agric Sci, 2007, 35(22): 6850-6851, 6853. | |
[7] |
Xu XM, Xu ZY, Li ZY, et al. Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3;6[J]. Plant Biotechnol J, 2021, 19(6): 1101-1103.
doi: 10.1111/pbi.13602 pmid: 33942463 |
[8] |
Zhao XY, Zhao XM, Wei YM, et al. Isolation and identification of a novel antifungal protein from a rhizobacterium Bacillus subtilis strain F3[J]. J Phytopathol, 2013, 161(1): 43-48.
doi: 10.1111/jph.12015 URL |
[9] |
Wang XL, Wang L, Wang J, et al. Bacillus cereus AR156-induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit[J]. PLoS One, 2014, 9(11): e112494.
doi: 10.1371/journal.pone.0112494 URL |
[10] | 王刚, 沈永红, 王俊芳, 程希. 蜡样芽孢杆菌B3-7菌株对小麦全蚀病菌的抑制作用[J]. 河南大学学报: 自然科学版, 2005, 35(1): 62-64. |
Wang G, Shen YH, Wang JF, et al. Inhibitory action of bacilis Cereus B3-7 strain on Gaeumannomyces graminis var tritici[J]. J Henan Univ Nat Sci, 2005, 35(1): 62-64. | |
[11] | 李生樟, 陈颖, 杨瑞环, 等. 一株拮抗黄单胞菌的贝莱斯芽孢杆菌的分离和鉴定[J]. 微生物学报, 2019, 59(10): 1969-1983. |
Li SZ, Chen Y, Yang RH, et al. Isolation and identification of a Bacillus velezensis strain against plant pathogenic Xanthomonas spp[J]. Acta Microbiol Sin, 2019, 59(10): 1969-1983. | |
[12] | 李生樟, 刘昭, 杨瑞环, 等. 一株拮抗水稻条斑病菌的蜡样芽孢杆菌的分离和鉴定[J]. 江苏农业科学, 2020, 48(7): 127-136. |
Li SZ, Liu Z, Yang RH, et al. Isolation and identification of a Bacillus cereus strain against plant pathogenic Xanthomonas oryzae[J]. Jiangsu Agric Sci, 2020, 48(7): 127-136. | |
[13] | 黄梦桑, 杨瑞环, 阎依超, 等. 一株具有防治水稻条斑病潜力的高地芽孢杆菌181-7[J]. 植物病理学报, 2021, 51(6): 962-974. |
Huang MS, Yang RH, Yan YC, et al. Bacillus altitudinis 181-7, a potential biocontrol agent against bacterial leaf streak of rice[J]. Acta Phytopathol Sin, 2021, 51(6): 962-974. | |
[14] |
Yang RH, Li SZ, Li YL, et al. Bactericidal effect of Pseudomonas oryziphila sp. nov., a novel Pseudomonas species against Xanthomonas oryzae reduces disease severity of bacterial leaf streak of rice[J]. Front Microbiol, 2021, 12: 759536.
doi: 10.3389/fmicb.2021.759536 URL |
[15] |
Yamamoto S, Harayama S. PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains[J]. Appl Environ Microbiol, 1995, 61(3): 1104-1109.
doi: 10.1128/aem.61.3.1104-1109.1995 URL |
[16] |
Singh R, Paul D, Jain RK. Biofilms: implications in bioremediation[J]. Trends Microbiol, 2006, 14(9): 389-397.
pmid: 16857359 |
[17] | 袁智鹏. 解淀粉酶芽孢杆菌产抗真菌物质的提取、分离、初步鉴定及生防活性的探究[D]. 烟台: 烟台大学, 2022. |
Yuan ZP. Study on extraction, isolation, preliminary identification and biocontrol activity of antifungal substances produced by Bacillus amylase[D]. Yantai: Yantai University, 2022. | |
[18] | Kajimura Y, Sugiyama M, Kaneda M. Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2[J]. J Antibiot(Tokyo), 1995, 48(10): 1095-1103. |
[19] |
Besson F, Michel G. Mycosubtilins B and C: minor antibiotics from mycosubtilin-producer Bacillus subtilis[J]. Microbios, 1990, 62(251): 93-99.
pmid: 2115097 |
[20] |
Malanicheva IA, Kozlov DG, Efimenko TA, et al. New antibiotics produced by Bacillus subtilis strains[J]. Mikrobiologiia, 2014, 83(4): 445-450.
pmid: 25844455 |
[21] |
Chen H, Wang L, Su CX, et al. Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis[J]. Lett Appl Microbiol, 2008, 47(3): 180-186.
doi: 10.1111/j.1472-765X.2008.02412.x pmid: 19552782 |
[22] | 杨杰. 枯草杆菌fmb60的NRPS和Ⅰ型PKS基因簇代谢产物发掘及其生物活性研究[D]. 南京: 南京农业大学, 2017. |
Yang J. Genomics-driven discovery of NRPS and type I PKS metabolites from Bacillus subtilis fmb60 and their bioactivity[D]. Nanjing: Nanjing Agricultural University, 2017. | |
[23] | 申琪瑶. 利用Red/ET重组技术克隆和异源表达芽孢杆菌天然产物基因簇及海洋拮抗细菌分离[D]. 济南: 山东大学, 2016. |
Shen QY. Cloning and heterologous expression of natural product gene clusters from Bacillus using red/ET recombineering and the separation of antagonistic bacterium from marine environment[D]. Jinan: Shandong University, 2016. |
[1] | SHEN Yun-xin, SHI Zhu-feng, ZHOU Xu-dong, LI Ming-gang, ZHANG Qing, FENG Lu-yao, CHEN Qi-bin, YANG Pei-wen. Isolation, Identification and Bio-activity of Three Bacillus Strains with Biocontrol Function [J]. Biotechnology Bulletin, 2023, 39(3): 267-277. |
[2] | ZOU Lan, WANG Qian, LI Mu-yi, YE Kun-hao, HUANG Jing. Identification, Biocontrol and Plant Growth-promoting Potential of Endophytic Bacterial Strain JY-3-1R from Aconitum carmichaelii Debx. [J]. Biotechnology Bulletin, 2023, 39(10): 246-255. |
[3] | SUN Zhuo, WANG Yan, HAN Zhong-ming, WANG Yun-he, ZHAO Shu-jie, YANG Li-min. Isolation, Identification and Biocontrol Potential of Rhizospheric Fungus of Saposhnikovia divaricata [J]. Biotechnology Bulletin, 2023, 39(1): 264-273. |
[4] | YAN Cong-wen, SU Dai-fa, DAI Qing-zhong, ZHANG Zhen-rong, TIAN Yun-xia, DONG Qiong-e, ZHOU Wen-xing, CHEN Shan-yan, TONG Jiang-yun, CUI Xiao-long. Advances in Biological Control of Strawberry Diseases [J]. Biotechnology Bulletin, 2022, 38(12): 73-87. |
[5] | ZHANG Jie, XIA Ming-cong, ZHU Wen-qian, LIANG Juan, SUN Run-hong, XU Wen, WU Chao, YANG Li-rong. Screening of Bacillus sp. Against Vegetable Root-knot Nematode and Study on Its Biocontrol Mechanism [J]. Biotechnology Bulletin, 2021, 37(7): 175-182. |
[6] | ZHANG Ya-jing, SONG Mei-yan, ZHANG Yi-jing, FANG Qing, YANG Jun, PENG De-liang, HUANG Wen-kun, PENG Huan, ZHU Ying-bo, KONG Ling-an. Identification of Purpureocillium lilacinum and Trichoderma harzianum Strains for Simultaneously Controlling Cucumber Root Rot and Root-knot Nematode Diseases [J]. Biotechnology Bulletin, 2021, 37(2): 40-50. |
[7] | WANG Wei-xiong, SHEN Bo, JIA Hong-bai, QIAO Jun-qing, NIU Ben. Application of Rhizospheric Biocontrol Consortia and the Potential Mechanisms of Their Enhancing Efficacy on Disease-suppressive Effect [J]. Biotechnology Bulletin, 2020, 36(9): 31-41. |
[8] | SONG Ben-chao, ZHAO Dong-mei, YANG Zhi-hui, ZHANG Dai, ZHAO Zhi, ZHU Jie-hua. Screening and Identification of an Antagonistic Bacterium Against Rhizoctonia solani and Analysis of Biocontrol Factor [J]. Biotechnology Bulletin, 2019, 35(8): 9-16. |
[9] | QI Jia-ming, SUN Shan-shan, ZHANG Dong-xu, XU Zhi-wen, XU Yan-ping. Identification and Biocontrol Activity Analysis of Bacillus sp. BS-6 Based on Genome-wide Data [J]. Biotechnology Bulletin, 2019, 35(10): 111-118. |
[10] | CONG Zi-wen ,JIAO Jing-hua ,ZHOU Shuang-qing, HUANG Dong-yi ,WU Wen-qiang ,XU Yun ,XIA We,i ZHANG Rong-ping ,HUANG Xiao-long. Identification and Biocontrol Characteristics of Streptomyces sp. 30702 [J]. Biotechnology Bulletin, 2018, 34(6): 190-198. |
[11] | ZHANG Guang-zhi, WANG Jia-ning, WU Xiao-qing, ZHOU Fang-yuan, ZHANG Xin-jian, ZHAO Xiao-yan, XIE Xue-ying, ZHOU Hong-zi. Diversity and Functional Activity of Trichoderma in the Rhizosphere Soil from Facility Tomato Production [J]. Biotechnology Bulletin, 2018, 34(4): 179-185. |
[12] | GUO Qian-qian, YANG Qian-qian, SONG Li-min, LIANG Wen-xing. The Research Progress of Protein Acetylation in Plant Pathology [J]. Biotechnology Bulletin, 2018, 34(2): 96-101. |
[13] | GUO Ji-ping, MA Guang, WANG Zhi-jie, QI Shan-hou, WANG Bao-mei, SU Chang-qing. Identification and Analysis of Biocontrol Proteins from a Strain of Bacillus amyloliquefaciens [J]. Biotechnology Bulletin, 2018, 34(1): 202-207. |
[14] | HAO Nan,TONG Zan-Hua,QIU De-Wen. Isolation of Brevibacillus laterosporus A60 and Its Greenhouse Control Efficiency Against Phytophthora capsica [J]. Biotechnology Bulletin, 2017, 33(9): 160-165. |
[15] | Zhou Guowang, Li Yuhong, Zhang Yuan, Li Haitao, Liu Rongmei, Gao Jiguo. A Study of Bacillus thuringiensis Strain LTS290 Inhibiting Fusarium [J]. Biotechnology Bulletin, 2015, 31(8): 153-158. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||