生物技术通报 ›› 2020, Vol. 36 ›› Issue (11): 155-163.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0448
李锐1,2(), 孙祖莉2, 杨贤庆1,3, 李来好1,3, 魏涯1, 岑剑伟1,3, 王晶1,2, 赵永强1,3()
收稿日期:
2020-04-16
出版日期:
2020-11-26
发布日期:
2020-11-20
作者简介:
李锐,男,硕士研究生,研究方向:水产品加工及贮藏;E-mail: 基金资助:
LI Rui1,2(), SUN Zu-li2, YANG Xian-qing1,3, LI Lai-hao1,3, WEI Ya1, CEN Jian-wei1,3, WANG Jing1,2, ZHAO Yong-qiang1,3()
Received:
2020-04-16
Published:
2020-11-26
Online:
2020-11-20
摘要:
代谢组学技术作为一门新兴起的技术,可对样本中小分子代谢物进行定性定量分析,在现代生命科学研究中得到广泛运用,同时也为水产品品质与质量安全变化分子作用机理的研究带来了新的方法。介绍了代谢组学技术及其在水产品质与质量安全控制中的应用,总结了近年来代谢组学技术在水产品养殖与营养、原料鉴定、贮运保鲜、加工产品品质安全领域的研究情况,探讨了组学技术之间的相互关系并对多组学技术联用在研究水产品安全影响因子、品质变化机理的进一步应用提出展望,以期为利用代谢组学技术以及多组学联用对水产品品质与质量安全方面的研究提供参考。
李锐, 孙祖莉, 杨贤庆, 李来好, 魏涯, 岑剑伟, 王晶, 赵永强. 代谢组学在水产品品质与安全中的研究进展[J]. 生物技术通报, 2020, 36(11): 155-163.
LI Rui, SUN Zu-li, YANG Xian-qing, LI Lai-hao, WEI Ya, CEN Jian-wei, WANG Jing, ZHAO Yong-qiang. Advances in the Applications of Metabolomics Technologies in Aquatic Products Quality and Safety Research[J]. Biotechnology Bulletin, 2020, 36(11): 155-163.
[1] | 赵永强, 李来好, 杨贤庆, 等. 臭氧在水产品加工中应用综述[J]. 南方水产科学, 2013,9(5):149-154. |
Zhao YQ, Li LH, Yang XQ, et al. Applications of ozone in aquatic products processing:A review[J]. South China Fisheries Science, 2013,9(5):149-154. | |
[2] | 孙玮. 谈水产品流通过程中的质量安全影响因素[J]. 食品安全导刊, 2016(36):58. |
Sun W. Talking about the factors affecting of quality and safety of aquatic products in the circulation process[J]. China Food Safety Magazine, 2016(36):58. | |
沈媛. 我国水产品流通过程中的质量安全影响因素分析[D]. 上海:上海海洋大学, 2014. | |
Shen Y. Analysis on Influencing factors of aquatic products quality and safety in circulation system in China[D]. Shanghai:Shanghai Ocean University, 2014. | |
[3] | 相悦, 孙承锋, 杨贤庆, 等. 鱼类贮运过程中蛋白质相关品质变化机制的研究进展[J]. 中国渔业质量与标准, 2019,9(5):8-16. |
Xiang Y, Sun CF, Yang XQ, et al. Research progress on the mechanism of protein-related quality changes in fish during storage and transportation[J]. Chinese Fishery Quality and Standards, 2019,9(5):8-16. | |
[4] |
Castro-Puyana M, Pérez-Míguez R, Montero L, et al. Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability[J]. Trac Trends in Analytical Chemistry, 2017,93:102-118.
doi: 10.1016/j.trac.2017.05.004 URL |
[5] |
Dona AC, Kyriakides M, Scott F, et al. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments[J]. Computational & Structural Biotechnology Journal, 2016,14:135-153.
doi: 10.1016/j.csbj.2016.02.005 URL pmid: 27087910 |
[6] |
席晓敏, 张和平. 微生物代谢组学研究及应用进展[J]. 食品科学, 2016,37(11):283-289.
doi: 10.7506/spkx1002-6630-201611049 URL |
Xi XM, Zhang HP. Progress in microbial metabolomics and its application[J]. Food Science, 2016,37(11):283-289.
doi: 10.7506/spkx1002-6630-201611049 URL |
|
[7] |
Nicholson JK, Wilson ID. Opinion:understanding ‘global’ systems biology:metabonomics and the continuum of metabolism[J]. Nature Reviews Drug Discovery, 2003,2(8):668-676.
doi: 10.1038/nrd1157 URL pmid: 12904817 |
[8] |
Bayram M, Gökirmakli Ç. Horizon scanning:how will metabolomics applications transform food science, bioengineering, and medical innovation in the current era of foodomics?[J]. OMICS, 2018,22(3):177-183.
doi: 10.1089/omi.2017.0203 URL pmid: 29431584 |
[9] | Miggiels P, Wouters B, van Westen GJP, et al. Novel technologies for metabolomics:More for less[J]. Trends in Analytical Chemistry, 2019,120:115323. |
[10] |
Tweeddale H, Notley-McRobb L, Ferenci T. Effect of slow growth on metabolism of Escherichia coli, as revealed by global metabolite pool(“Metabolome”)analysis[J]. Journal of Bacteriology, 1998,180(19):5109-5116.
doi: 10.1128/JB.180.19.5109-5116.1998 URL pmid: 9748443 |
[11] |
Nicholson JK, Lindon JC. Systems biology:Metabonomics[J]. Nature, 2008,455(7216) 1054-1056.
doi: 10.1038/4551054a URL pmid: 18948945 |
[12] | Xu YJ, Wang CS, Ho EW, et al. Recent developments and applications of metabolomics in microbiological investigations[J]. Trends in Analytical Chemistry, 2014,56:37-48. |
[13] | Castro-Puyana M, Herrero M. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability[J]. Trac Trends in Analytical Chemistry, 2013,52:74-87. |
[14] |
Oldiges M, Lütz S, Pflug S, et al. Metabolomics:current state and evolving methodologies and tools[J]. Applied Microbiology and Biotechnology, 2007,76(3):495-511.
doi: 10.1007/s00253-007-1029-2 URL pmid: 17665194 |
[15] | 龚凌霄, 迟海林, 王静, 等. 靶向代谢组学技术在营养性疾病研究中的应用[J]. 食品工业科技, 2017,38(18):323-327. |
Gong LX, Chi HL, Wang J, et al. Application of targeted metabolomics technology in nutritional diseases[J]. Science and Technology of Food Industry, 2017,38(18):323-327. | |
[16] | 刘思洁, 吴永宁, 方赤光. 代谢组学技术在食品安全中的应用[J]. 食品安全质量检测学报, 2014,5(4):1081-1086. |
Liu SJ, Wu YN, Fang CG. Review on the application of metabonomics approach in food safety[J]. Journal of Food Safety & Quality, 2014,5(4):1081-1086. | |
[17] | 王晓宇, 杜仁鹏, 王瑶, 等. 代谢组学技术在食品认证及特征鉴定中的应用[J]. 中国农学通报, 2016,32(32):61-65. |
Wang XY, Du RP, Wang Y, et al. Application of metabolomics technology in food certification and characteristic identification[J]. Chinese Agricultural Science Bulletin, 2016,32(32):61-65. | |
[18] | 静平, 吴振兴, 厉艳, 等. 组学技术在食品安全检测中的应用[J]. 分析科学学报, 2019,35(6):766-770. |
Jing P, Wu ZX, Li Y, et al. The application of omics in the food safety detection[J]. Journal of Analytical Science, 2019,35(6):766-770. | |
[19] |
Beckonert O, Keun HC, Ebbels TMD, et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts[J]. Nature Protocols, 2007,2(11):2692-2703.
doi: 10.1038/nprot.2007.376 URL pmid: 18007604 |
[20] |
Cassiède M, Nair S, Dueck M, et al. Dataset of urinary metabolites measured by 1H NMR analysis of normal human urine[J]. Data in Brief, 2017,10:227-229.
doi: 10.1016/j.dib.2016.11.101 URL pmid: 27995159 |
[21] |
Chaleckis R, Meister I, Zhang P, et al. Challenges, progress and promises of metabolite annotation for LC-MS-based metabolomics[J]. Current Opinion in Biotechnology, 2019,55:44-50.
doi: 10.1016/j.copbio.2018.07.010 URL pmid: 30138778 |
[22] | Fancy SA, Rumpel K. GC-MS-Based metabolomics[M]∥Wang F. Biomarker Methods in Drug Discovery and Development. New York:Springer, 2008: 317-340. |
[23] |
Zhou B, Xiao JF, Tuli L, et al. LC-MS-based metabolomics[J]. Molecular Biosystems, 2012,8(2):470-481.
doi: 10.1039/c1mb05350g URL pmid: 22041788 |
[24] |
Ramautar R, Somsen GW, Jong GJD. CE-MS in metabolomics[J]. Electrophoresis, 2010,30(1):276-291.
doi: 10.1002/elps.200800512 URL pmid: 19107702 |
[25] | 陈康, 王海星, 张燕平, 等. IKnife-REIMS联用技术对南极犬牙鱼脂质组学轮廓检测[J]. 食品科学, 2019,40(14):259-264. |
Chen K, Wang HX, Zhang YP, et al. IKnife coupling rapid evaporative ionization mass spectrometry for lipidomic profiling of patagonian toothfish[J]. Food Science, 2019,40(14):259-264.
doi: 10.1111/jfds.1975.40.issue-2 URL |
|
[26] |
Ellis DI, Brewster VL, Dunn WB, et al. Fingerprinting food:current technologies for the detection of food adulteration and contamination[J]. Chemical Society Reviews, 2012,41(17):5706-5727.
doi: 10.1039/c2cs35138b URL pmid: 22729179 |
[27] |
Mozzi F, Ortiz ME, Bleckwedel J, et al. Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria[J]. Food Research International, 2013,54(1):1152-1161.
doi: 10.1016/j.foodres.2012.11.010 URL |
[28] | 马倩倩. 中华绒螯蟹饲料适宜脂肪源筛选并提高其利用效率的研究[D]. 上海:华东师范大学, 2018. |
Ma QQ. Study on the dietary suitable lipid source and utilizationo of chinese mitten crab Eriocheir sinensis[D]. Shanghai:East China Normal University, 2018. | |
[29] |
赵磊, 龙晓文, 吴旭干, 等. 育肥饲料中混合植物油替代鱼油对中华绒螯蟹成体雄蟹性腺发育、脂质代谢、抗氧化及免疫性能的影响[J]. 动物营养学报, 2016,28(2):455-467.
doi: 10.3969/j.issn.1006-267x.2016.02.019 URL |
Zhao L, Long XW, Wu XG, et al. Effects of fish oil replacement by blending vegetable oils in fattening diets on gonadal development, lipid metabolism, antioxidant and immune capacities of adult male chinese mitten crab(Eriocheir sinensis)[J]. Chinese Journal of Animal Nutrition, 2016,28(2):455-467. | |
[30] |
Schock TB, Newton S, Brenkert K, et al. An NMR-based metabolomic assessment of cultured cobia health in response to dietary manipulation[J]. Food Chemistry, 2012,133(1):90-101.
doi: 10.1016/j.foodchem.2011.12.077 URL |
[31] | 黄颖. 饲料牛磺酸对尼罗罗非鱼的代谢组影响及其机制研究[D]. 厦门:厦门大学, 2018. |
Huang Y. Study on the metabolic effects and mechanism of dietary taurine supplementation on Nile tilapia[D]. Xiamen:Xiamen University, 2018. | |
[32] |
Rochfort S, Ezernieks V, Maher AD, et al. Mussel metabolomics-species discrimination and provenance determination[J]. Food Research International, 2013,54(1):1302-1312.
doi: 10.1016/j.foodres.2013.03.004 URL |
[33] |
Aursand M, Standal IB, Praël A, et al. 13C NMR pattern recognition techniques for the classification of Atlantic salmon(Salmo salar L.)according to their wild, farmed, and geographical origin[J]. J Agric Food Chem, 2009,57(9):3444-3451.
doi: 10.1021/jf8039268 URL pmid: 19348423 |
[34] |
Shen Q, Wang YY, Gong LK, et al. Shotgun lipidomics strategy for fast analysis of phospholipids in fisheries waste and its potential in species differentiation[J]. Journal of Agricultural and Food Chemistry, 2012,60(37):9384-9393.
doi: 10.1021/jf303181s URL pmid: 22946708 |
[35] |
Song G, Zhang M, Zhang Y, et al. In situ Method for real-time discriminating salmon and rainbow trout without sample preparation using iKnife and rapid evaporative ionization mass spectrometry-based lipidomics[J]. Journal of Agricultural and Food Chemistry, 2019,67(16):4679-4688.
doi: 10.1021/acs.jafc.9b00751 URL pmid: 30951305 |
[36] |
Song G, Chen K, Wang HX, et al. In situ and real-time authentication of Thunnus species by iKnife rapid evaporative ionization mass spectrometry based lipidomics without sample pretreatment[J]. Food Chemistry, 2020,318:126504.
doi: 10.1016/j.foodchem.2020.126504 URL pmid: 32146310 |
[37] |
Oms-Oliu G, Odriozola-Serrano I, Martín-Belloso O. Metabolomics for assessing safety and quality of plant-derived food[J]. Food Research International, 2013,54(1):1172-1183.
doi: 10.1016/j.foodres.2013.04.005 URL |
[38] | 陈山乔. 基于代谢组学的水产品物流相关技术研究[D]. 上海:上海海洋大学, 2016. |
Chen SQ. Aquatic producs preservation and transportation investigation based on metabolomics[D]. Shanghai:Shanghai Ocean University, 2016. | |
[39] |
Aru V, Pisano MB, Savorani F, et al. Metabolomics analysis of shucked mussels’ freshness[J]. Food Chemistry, 2016,205:58-65.
doi: 10.1016/j.foodchem.2016.02.152 URL pmid: 27006214 |
[40] |
Jaaskelainen E, Jakobsen LMA, Hultman J, et al. Metabolomics and bacterial diversity of packaged yellowfin tuna(Thunnus albacares)and salmon(Salmo salar)show fish species-specific spoilage development during chilled storage[J]. International Journal of Food Microbiology, 2019,293:44-52.
doi: 10.1016/j.ijfoodmicro.2018.12.021 URL pmid: 30639999 |
[41] |
Chen QS, Wang XC, Cong PX, et al. Mechanism ofphospholipid hydrolysis for oyster Crassostrea plicatula phospholipids ouring storage using shotgun lipidomics[J]. Lipids, 2017,52(12):1045-1058.
doi: 10.1007/s11745-017-4305-7 URL pmid: 28975480 |
[42] |
Wang YY, Zhang H. Tracking phospholipid profiling of muscle from ctennopharyngodon idellus during storage by shotgun lipidomics[J]. Journal of Agricultural and Food Chemistry, 2011,59(21):11635-11642.
doi: 10.1021/jf2030852 URL pmid: 21961876 |
[43] |
Chen DD, Ye YF, Chen JJ, et al. Evolution of metabolomics profile of crab paste during fermentation[J]. Food Chemistry, 2016,192:886-892.
doi: 10.1016/j.foodchem.2015.07.098 URL pmid: 26304425 |
[44] |
Wang YQ, Li CS, Li LH, et al. Application of UHPLC-Q/TOF-MS-based metabolomics in the evaluation of metabolites and taste quality of Chinese fish sauce(Yu-lu)during fermentation[J]. Food Chemistry, 2019,296:132-141.
doi: 10.1016/j.foodchem.2019.05.043 URL pmid: 31202297 |
[45] |
Wu YY, Cai QX, Li LH, et al. Comparison of the changes in fatty acids and triacylglycerols between Decapterus maruadsi and Trichiurus lepturus during salt-dried process[J]. Journal of Oleo Science, 2019,68(8):769-779.
doi: 10.5650/jos.ess19032 URL pmid: 31292339 |
[46] | 张蒙娜, 宋恭帅, 王宏海, 等. iKnife智能刀-快速蒸发离子化质谱实时检测空气油炸带鱼的脂质组学品质特征[J]. 食品科学, 2020,41(14):314-320. |
Zhang MN, Song GS, Wang HH, et al. Real-time detection of lipidomic characteristics of air-fried hairtail by iknife rapid evaporative ionization mass spectrometry[J]. Food Science, 2020,41(14):314-320. |
[1] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[2] | 杨玉梅, 张坤晓. 应用CRISPR/Cas9技术建立ERK激酶相分离荧光探针定点整合的稳定细胞株[J]. 生物技术通报, 2023, 39(8): 159-164. |
[3] | 韩华蕊, 杨宇琭, 门艺涵, 韩尚玲, 韩渊怀, 霍轶琼, 侯思宇. 基于代谢组学研究谷子SiYABBYs参与花发育过程中鼠李糖苷的生物合成[J]. 生物技术通报, 2023, 39(6): 189-198. |
[4] | 于惠林, 吴孔明. 中国转基因大豆的产业化策略[J]. 生物技术通报, 2023, 39(1): 1-15. |
[5] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[6] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[7] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[8] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[9] | 徐重新, 仲建锋, 高美静, 卢莉娜, 刘贤金, 沈燕. 植物内生菌在食用农产品质量安全与营养品质调控中的研究进展[J]. 生物技术通报, 2022, 38(5): 215-227. |
[10] | 孙德权, 陆新华, 李伟明, 胡玉林, 段雅婕, 庞振才, 胡会刚. 介孔二氧化硅纳米粒在农业中的应用[J]. 生物技术通报, 2022, 38(5): 228-239. |
[11] | 李然, 钱前, 高振宇. 水稻品质的遗传与育种改良研究进展[J]. 生物技术通报, 2022, 38(4): 4-19. |
[12] | 杨玉萍, 张霞, 王翀翀, 王晓艳. 不同年龄大鼠尿液代谢组学研究[J]. 生物技术通报, 2022, 38(2): 166-172. |
[13] | 张雅涵, 朱丽霞, 胡静, 朱亚静, 张雪婧, 曹叶中. 草甘膦在我国生物育种产业化应用中的机遇与挑战[J]. 生物技术通报, 2022, 38(11): 1-9. |
[14] | 赵洋, 孙慧明, 林浩澎, 罗娉婷, 朱雅婷, 陈琼华, 舒琥. 一株安全高效的好氧反硝化菌Pseudomonas stutzeri DZ11的生物安全性及脱氮性能研究[J]. 生物技术通报, 2022, 38(10): 226-234. |
[15] | 武杞蔓, 田诗涵, 李昀烨, 潘英杰, 张颖. 微生物菌肥对设施黄瓜生长、产量及品质的影响[J]. 生物技术通报, 2022, 38(1): 125-131. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 773
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 480
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||